de-Rodrigo commited on
Commit
8558a87
Β·
1 Parent(s): cc83f63

Back to Avoid Runtime Erorr

Browse files
Files changed (1) hide show
  1. app.py +61 -60
app.py CHANGED
@@ -134,70 +134,71 @@ if __name__ == "__main__":
134
  with gr.Blocks() as demo:
135
  gr.Markdown("# Saliency Maps with the MERIT Dataset πŸŽ’πŸ“ƒπŸ†")
136
 
137
- with gr.Column(scale=2, min_width=600):
138
- gr.Image(value=README_IMAGE_PATH, height=400, fit="scale-down")
139
-
140
- with gr.Tabs():
141
- with gr.Tab("Introduction"):
142
- gr.Markdown(
143
- """
144
- ## Welcome to Saliency Maps with the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) πŸŽ’πŸ“ƒπŸ†
145
-
146
- This space demonstrates the capabilities of different Vision Language models
147
- for document understanding tasks.
148
-
149
- ### Key Features:
150
- - Process images from the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) or upload your own image.
151
- - Use a fine-tuned version of the models availabe to extract grades from documents.
152
- - Visualize saliency maps to understand where the model is looking (WIP πŸ› οΈ).
153
- """
154
- )
155
 
156
- with gr.Tab("Try It Yourself"):
157
- gr.Markdown(
158
- "Select a model and an image from the dataset, or upload your own image."
159
- )
160
 
161
- with gr.Row():
162
- with gr.Column():
163
- model_dropdown = gr.Dropdown(
164
- choices=models, label="Select Model"
165
- )
166
- dataset_slider = gr.Slider(
167
- minimum=0,
168
- maximum=len(dataset) - 1,
169
- step=1,
170
- label="Dataset Image Index",
171
- )
172
- upload_image = gr.Image(
173
- type="pil", label="Or Upload Your Own Image"
174
- )
175
-
176
- preview_image = gr.Image(label="Selected/Uploaded Image")
177
-
178
- process_button = gr.Button("Process Image")
179
-
180
- with gr.Row():
181
- output_image = gr.Image(label="Processed Image")
182
- output_text = gr.Textbox(label="Result")
183
-
184
- # Update preview image when slider changes
185
- dataset_slider.change(
186
- fn=update_image,
187
- inputs=[dataset_slider],
188
- outputs=[preview_image],
189
- )
190
 
191
- # Update preview image when an image is uploaded
192
- upload_image.change(
193
- fn=lambda x: x, inputs=[upload_image], outputs=[preview_image]
194
- )
 
 
195
 
196
- # Process image when button is clicked
197
- process_button.click(
198
- fn=process_image,
199
- inputs=[model_dropdown, upload_image, dataset_slider],
200
- outputs=[output_image, output_text],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  )
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  demo.launch()
 
134
  with gr.Blocks() as demo:
135
  gr.Markdown("# Saliency Maps with the MERIT Dataset πŸŽ’πŸ“ƒπŸ†")
136
 
137
+ gr.Image(value=README_IMAGE_PATH, width=800, height=600)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
+ with gr.Tab("Introduction"):
140
+ gr.Markdown(
141
+ """
142
+ ## Welcome to Saliency Maps with the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) πŸŽ’πŸ“ƒπŸ†
143
 
144
+ This space demonstrates the capabilities of different Vision Language models
145
+ for document understanding tasks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146
 
147
+ ### Key Features:
148
+ - Process images from the [MERIT Dataset](https://huggingface.co/datasets/de-Rodrigo/merit) or upload your own image.
149
+ - Use a fine-tuned version of the models availabe to extract grades from documents.
150
+ - Visualize saliency maps to understand where the model is looking (WIP πŸ› οΈ).
151
+ """
152
+ )
153
 
154
+ # gr.Image(
155
+ # value=GIF_PATH,
156
+ # label="Dataset samples you can process",
157
+ # width=800,
158
+ # height=600,
159
+ # )
160
+
161
+ with gr.Tab("Try It Yourself"):
162
+ gr.Markdown(
163
+ "Select a model and an image from the dataset, or upload your own image."
164
+ )
165
+
166
+ with gr.Row():
167
+ with gr.Column():
168
+ model_dropdown = gr.Dropdown(choices=models, label="Select Model")
169
+ dataset_slider = gr.Slider(
170
+ minimum=0,
171
+ maximum=len(dataset) - 1,
172
+ step=1,
173
+ label="Dataset Image Index",
174
+ )
175
+ upload_image = gr.Image(
176
+ type="pil", label="Or Upload Your Own Image"
177
  )
178
 
179
+ preview_image = gr.Image(label="Selected/Uploaded Image")
180
+
181
+ process_button = gr.Button("Process Image")
182
+
183
+ with gr.Row():
184
+ output_image = gr.Image(label="Processed Image")
185
+ output_text = gr.Textbox(label="Result")
186
+
187
+ # Update preview image when slider changes
188
+ dataset_slider.change(
189
+ fn=update_image, inputs=[dataset_slider], outputs=[preview_image]
190
+ )
191
+
192
+ # Update preview image when an image is uploaded
193
+ upload_image.change(
194
+ fn=lambda x: x, inputs=[upload_image], outputs=[preview_image]
195
+ )
196
+
197
+ # Process image when button is clicked
198
+ process_button.click(
199
+ fn=process_image,
200
+ inputs=[model_dropdown, upload_image, dataset_slider],
201
+ outputs=[output_image, output_text],
202
+ )
203
+
204
  demo.launch()