David Driscoll
commited on
Commit
·
4f14988
1
Parent(s):
fd8b339
Restructure
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
-
import torch
|
5 |
-
from torchvision import models, transforms
|
6 |
-
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
|
7 |
from PIL import Image
|
8 |
import mediapipe as mp
|
9 |
from fer import FER # Facial emotion recognition
|
@@ -12,7 +9,6 @@ from fer import FER # Facial emotion recognition
|
|
12 |
# Configuration
|
13 |
# -----------------------------
|
14 |
SKIP_RATE = 1 # For image processing, always run the analysis
|
15 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
DESIRED_SIZE = (640, 480)
|
17 |
|
18 |
# -----------------------------
|
@@ -20,7 +16,6 @@ DESIRED_SIZE = (640, 480)
|
|
20 |
# -----------------------------
|
21 |
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
|
22 |
emotion_cache = {"text": "Initializing...", "counter": 0}
|
23 |
-
objects_cache = {"boxes": None, "text": "Initializing...", "object_list_text": "", "counter": 0}
|
24 |
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
25 |
|
26 |
# -----------------------------
|
@@ -34,19 +29,9 @@ mp_drawing = mp.solutions.drawing_utils
|
|
34 |
mp_face_detection = mp.solutions.face_detection
|
35 |
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
36 |
|
37 |
-
# Object Detection using Faster R-CNN
|
38 |
-
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
|
39 |
-
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
|
40 |
-
)
|
41 |
-
object_detection_model.eval().to(device)
|
42 |
-
obj_transform = transforms.Compose([transforms.ToTensor()])
|
43 |
-
|
44 |
# Initialize the FER emotion detector (using the FER package)
|
45 |
emotion_detector = FER(mtcnn=True)
|
46 |
|
47 |
-
# Retrieve object categories from model weights metadata
|
48 |
-
object_categories = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.meta["categories"]
|
49 |
-
|
50 |
# -----------------------------
|
51 |
# Overlay Drawing Functions
|
52 |
# -----------------------------
|
@@ -100,27 +85,6 @@ def compute_emotion_overlay(image):
|
|
100 |
text = "No face detected"
|
101 |
return text
|
102 |
|
103 |
-
def compute_objects_overlay(image):
|
104 |
-
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
105 |
-
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
|
106 |
-
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
|
107 |
-
image_pil = Image.fromarray(frame_rgb_small)
|
108 |
-
img_tensor = obj_transform(image_pil).to(device)
|
109 |
-
with torch.no_grad():
|
110 |
-
detections = object_detection_model([img_tensor])[0]
|
111 |
-
threshold = 0.8
|
112 |
-
boxes = []
|
113 |
-
object_list = []
|
114 |
-
for box, score, label in zip(detections["boxes"], detections["scores"], detections["labels"]):
|
115 |
-
if score > threshold:
|
116 |
-
boxes.append(tuple(box.int().cpu().numpy()))
|
117 |
-
label_idx = int(label)
|
118 |
-
label_name = object_categories[label_idx] if label_idx < len(object_categories) else "Unknown"
|
119 |
-
object_list.append(f"{label_name} ({score:.2f})")
|
120 |
-
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
|
121 |
-
object_list_text = " | ".join(object_list) if object_list else "None"
|
122 |
-
return boxes, text, object_list_text
|
123 |
-
|
124 |
def compute_faces_overlay(image):
|
125 |
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
126 |
h, w, _ = frame_bgr.shape
|
@@ -179,8 +143,8 @@ def compute_facemesh_overlay(image):
|
|
179 |
if start_idx < len(landmark_points) and end_idx < len(landmark_points):
|
180 |
pt1 = landmark_points[start_idx]
|
181 |
pt2 = landmark_points[end_idx]
|
182 |
-
cv2.line(annotated, pt1, pt2, (
|
183 |
-
cv2.line(mask, pt1, pt2, (
|
184 |
# Draw green dots for each landmark
|
185 |
for pt in landmark_points:
|
186 |
cv2.circle(annotated, pt, 2, (0, 255, 0), -1)
|
@@ -194,7 +158,7 @@ def compute_facemesh_overlay(image):
|
|
194 |
def analyze_facemesh(image):
|
195 |
annotated_image, mask_image, text = compute_facemesh_overlay(image)
|
196 |
return (annotated_image, mask_image,
|
197 |
-
f"<div style='color: #
|
198 |
|
199 |
# -----------------------------
|
200 |
# Main Analysis Functions for Single Image
|
@@ -210,7 +174,7 @@ def analyze_posture_current(image):
|
|
210 |
output = current_frame.copy()
|
211 |
if posture_cache["landmarks"]:
|
212 |
output = draw_posture_overlay(output, posture_cache["landmarks"])
|
213 |
-
return output, f"<div style='color: #
|
214 |
|
215 |
def analyze_emotion_current(image):
|
216 |
global emotion_cache
|
@@ -219,22 +183,7 @@ def analyze_emotion_current(image):
|
|
219 |
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
|
220 |
text = compute_emotion_overlay(image)
|
221 |
emotion_cache["text"] = text
|
222 |
-
return current_frame, f"<div style='color: #
|
223 |
-
|
224 |
-
def analyze_objects_current(image):
|
225 |
-
global objects_cache
|
226 |
-
objects_cache["counter"] += 1
|
227 |
-
current_frame = np.array(image)
|
228 |
-
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
|
229 |
-
boxes, text, object_list_text = compute_objects_overlay(image)
|
230 |
-
objects_cache["boxes"] = boxes
|
231 |
-
objects_cache["text"] = text
|
232 |
-
objects_cache["object_list_text"] = object_list_text
|
233 |
-
output = current_frame.copy()
|
234 |
-
if objects_cache["boxes"]:
|
235 |
-
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
|
236 |
-
combined_text = f"Object Detection: {objects_cache['text']}<br>Details: {objects_cache['object_list_text']}"
|
237 |
-
return output, f"<div style='color: #ff6347 !important;'>{combined_text}</div>"
|
238 |
|
239 |
def analyze_faces_current(image):
|
240 |
global faces_cache
|
@@ -247,62 +196,35 @@ def analyze_faces_current(image):
|
|
247 |
output = current_frame.copy()
|
248 |
if faces_cache["boxes"]:
|
249 |
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
|
250 |
-
return output, f"<div style='color: #
|
251 |
-
|
252 |
-
def analyze_all(image):
|
253 |
-
current_frame = np.array(image).copy()
|
254 |
-
landmarks, posture_text = compute_posture_overlay(image)
|
255 |
-
if landmarks:
|
256 |
-
current_frame = draw_posture_overlay(current_frame, landmarks)
|
257 |
-
emotion_text = compute_emotion_overlay(image)
|
258 |
-
boxes_obj, objects_text, object_list_text = compute_objects_overlay(image)
|
259 |
-
if boxes_obj:
|
260 |
-
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
|
261 |
-
boxes_face, faces_text = compute_faces_overlay(image)
|
262 |
-
if boxes_face:
|
263 |
-
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
|
264 |
-
combined_text = (
|
265 |
-
f"<b>Posture Analysis:</b> {posture_text}<br>"
|
266 |
-
f"<b>Emotion Analysis:</b> {emotion_text}<br>"
|
267 |
-
f"<b>Object Detection:</b> {objects_text}<br>"
|
268 |
-
f"<b>Detected Objects:</b> {object_list_text}<br>"
|
269 |
-
f"<b>Face Detection:</b> {faces_text}"
|
270 |
-
)
|
271 |
-
if object_list_text and object_list_text != "None":
|
272 |
-
description_text = f"Image Description: The scene features {object_list_text}."
|
273 |
-
else:
|
274 |
-
description_text = "Image Description: No prominent objects detected."
|
275 |
-
combined_text += f"<br><br><div style='border:1px solid #ff6347; padding:10px; box-shadow: 0 0 10px #ff6347;'><b>{description_text}</b></div>"
|
276 |
-
combined_text_html = f"<div style='color: #ff6347 !important;'>{combined_text}</div>"
|
277 |
-
return current_frame, combined_text_html
|
278 |
|
279 |
# -----------------------------
|
280 |
-
# Custom CSS (Revamped High-Contrast Neon Theme)
|
281 |
# -----------------------------
|
282 |
custom_css = """
|
283 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
284 |
body {
|
285 |
background-color: #121212;
|
286 |
font-family: 'Orbitron', sans-serif;
|
287 |
-
color: #
|
288 |
}
|
289 |
.gradio-container {
|
290 |
background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
|
291 |
-
border: 2px solid #
|
292 |
-
box-shadow: 0 0 15px #
|
293 |
border-radius: 10px;
|
294 |
padding: 20px;
|
295 |
max-width: 1200px;
|
296 |
margin: auto;
|
297 |
}
|
298 |
.gradio-title, .gradio-description, .tab-item, .tab-item * {
|
299 |
-
color: #
|
300 |
-
text-shadow: 0 0 10px #
|
301 |
}
|
302 |
input, button, .output {
|
303 |
-
border: 1px solid #
|
304 |
-
box-shadow: 0 0 8px #
|
305 |
-
color: #
|
306 |
background-color: #1a1a1a;
|
307 |
}
|
308 |
"""
|
@@ -328,15 +250,6 @@ emotion_interface = gr.Interface(
|
|
328 |
live=False
|
329 |
)
|
330 |
|
331 |
-
objects_interface = gr.Interface(
|
332 |
-
fn=analyze_objects_current,
|
333 |
-
inputs=gr.Image(label="Upload an Image for Object Detection"),
|
334 |
-
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
|
335 |
-
title="Objects",
|
336 |
-
description="Detects objects using a pretrained Faster R-CNN.",
|
337 |
-
live=False
|
338 |
-
)
|
339 |
-
|
340 |
faces_interface = gr.Interface(
|
341 |
fn=analyze_faces_current,
|
342 |
inputs=gr.Image(label="Upload an Image for Face Detection"),
|
@@ -346,9 +259,6 @@ faces_interface = gr.Interface(
|
|
346 |
live=False
|
347 |
)
|
348 |
|
349 |
-
# -----------------------------
|
350 |
-
# New Facemesh Interface (Outputs annotated image and mask)
|
351 |
-
# -----------------------------
|
352 |
facemesh_interface = gr.Interface(
|
353 |
fn=analyze_facemesh,
|
354 |
inputs=gr.Image(label="Upload an Image for Facemesh"),
|
@@ -362,31 +272,18 @@ facemesh_interface = gr.Interface(
|
|
362 |
live=False
|
363 |
)
|
364 |
|
365 |
-
all_interface = gr.Interface(
|
366 |
-
fn=analyze_all,
|
367 |
-
inputs=gr.Image(label="Upload an Image for All Inferences"),
|
368 |
-
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Combined Analysis")],
|
369 |
-
title="All Inferences",
|
370 |
-
description="Runs posture, emotion, object, and face detection all at once.",
|
371 |
-
live=False
|
372 |
-
)
|
373 |
-
|
374 |
tabbed_interface = gr.TabbedInterface(
|
375 |
interface_list=[
|
376 |
posture_interface,
|
377 |
emotion_interface,
|
378 |
-
objects_interface,
|
379 |
faces_interface,
|
380 |
-
facemesh_interface
|
381 |
-
all_interface
|
382 |
],
|
383 |
tab_names=[
|
384 |
"Posture",
|
385 |
"Emotion",
|
386 |
-
"Objects",
|
387 |
"Faces",
|
388 |
-
"Facemesh"
|
389 |
-
"All Inferences"
|
390 |
]
|
391 |
)
|
392 |
|
@@ -396,7 +293,7 @@ tabbed_interface = gr.TabbedInterface(
|
|
396 |
demo = gr.Blocks(css=custom_css)
|
397 |
with demo:
|
398 |
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
|
399 |
-
gr.Markdown("<p class='gradio-description'>Upload an image to run high-tech analysis for posture, emotions,
|
400 |
tabbed_interface.render()
|
401 |
|
402 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
import cv2
|
3 |
import numpy as np
|
|
|
|
|
|
|
4 |
from PIL import Image
|
5 |
import mediapipe as mp
|
6 |
from fer import FER # Facial emotion recognition
|
|
|
9 |
# Configuration
|
10 |
# -----------------------------
|
11 |
SKIP_RATE = 1 # For image processing, always run the analysis
|
|
|
12 |
DESIRED_SIZE = (640, 480)
|
13 |
|
14 |
# -----------------------------
|
|
|
16 |
# -----------------------------
|
17 |
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
|
18 |
emotion_cache = {"text": "Initializing...", "counter": 0}
|
|
|
19 |
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
|
20 |
|
21 |
# -----------------------------
|
|
|
29 |
mp_face_detection = mp.solutions.face_detection
|
30 |
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Initialize the FER emotion detector (using the FER package)
|
33 |
emotion_detector = FER(mtcnn=True)
|
34 |
|
|
|
|
|
|
|
35 |
# -----------------------------
|
36 |
# Overlay Drawing Functions
|
37 |
# -----------------------------
|
|
|
85 |
text = "No face detected"
|
86 |
return text
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def compute_faces_overlay(image):
|
89 |
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
90 |
h, w, _ = frame_bgr.shape
|
|
|
143 |
if start_idx < len(landmark_points) and end_idx < len(landmark_points):
|
144 |
pt1 = landmark_points[start_idx]
|
145 |
pt2 = landmark_points[end_idx]
|
146 |
+
cv2.line(annotated, pt1, pt2, (255, 0, 0), 1)
|
147 |
+
cv2.line(mask, pt1, pt2, (255, 0, 0), 1)
|
148 |
# Draw green dots for each landmark
|
149 |
for pt in landmark_points:
|
150 |
cv2.circle(annotated, pt, 2, (0, 255, 0), -1)
|
|
|
158 |
def analyze_facemesh(image):
|
159 |
annotated_image, mask_image, text = compute_facemesh_overlay(image)
|
160 |
return (annotated_image, mask_image,
|
161 |
+
f"<div style='color: #00ff00 !important;'>Facemesh Analysis: {text}</div>")
|
162 |
|
163 |
# -----------------------------
|
164 |
# Main Analysis Functions for Single Image
|
|
|
174 |
output = current_frame.copy()
|
175 |
if posture_cache["landmarks"]:
|
176 |
output = draw_posture_overlay(output, posture_cache["landmarks"])
|
177 |
+
return output, f"<div style='color: #00ff00 !important;'>Posture Analysis: {posture_cache['text']}</div>"
|
178 |
|
179 |
def analyze_emotion_current(image):
|
180 |
global emotion_cache
|
|
|
183 |
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
|
184 |
text = compute_emotion_overlay(image)
|
185 |
emotion_cache["text"] = text
|
186 |
+
return current_frame, f"<div style='color: #00ff00 !important;'>Emotion Analysis: {emotion_cache['text']}</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
def analyze_faces_current(image):
|
189 |
global faces_cache
|
|
|
196 |
output = current_frame.copy()
|
197 |
if faces_cache["boxes"]:
|
198 |
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
|
199 |
+
return output, f"<div style='color: #00ff00 !important;'>Face Detection: {faces_cache['text']}</div>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
# -----------------------------
|
202 |
+
# Custom CSS (Revamped High-Contrast Neon Theme with Green Glows)
|
203 |
# -----------------------------
|
204 |
custom_css = """
|
205 |
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
|
206 |
body {
|
207 |
background-color: #121212;
|
208 |
font-family: 'Orbitron', sans-serif;
|
209 |
+
color: #00ff00;
|
210 |
}
|
211 |
.gradio-container {
|
212 |
background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
|
213 |
+
border: 2px solid #00ff00;
|
214 |
+
box-shadow: 0 0 15px #00ff00;
|
215 |
border-radius: 10px;
|
216 |
padding: 20px;
|
217 |
max-width: 1200px;
|
218 |
margin: auto;
|
219 |
}
|
220 |
.gradio-title, .gradio-description, .tab-item, .tab-item * {
|
221 |
+
color: #00ff00 !important;
|
222 |
+
text-shadow: 0 0 10px #00ff00;
|
223 |
}
|
224 |
input, button, .output {
|
225 |
+
border: 1px solid #00ff00;
|
226 |
+
box-shadow: 0 0 8px #00ff00;
|
227 |
+
color: #00ff00;
|
228 |
background-color: #1a1a1a;
|
229 |
}
|
230 |
"""
|
|
|
250 |
live=False
|
251 |
)
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
faces_interface = gr.Interface(
|
254 |
fn=analyze_faces_current,
|
255 |
inputs=gr.Image(label="Upload an Image for Face Detection"),
|
|
|
259 |
live=False
|
260 |
)
|
261 |
|
|
|
|
|
|
|
262 |
facemesh_interface = gr.Interface(
|
263 |
fn=analyze_facemesh,
|
264 |
inputs=gr.Image(label="Upload an Image for Facemesh"),
|
|
|
272 |
live=False
|
273 |
)
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
tabbed_interface = gr.TabbedInterface(
|
276 |
interface_list=[
|
277 |
posture_interface,
|
278 |
emotion_interface,
|
|
|
279 |
faces_interface,
|
280 |
+
facemesh_interface
|
|
|
281 |
],
|
282 |
tab_names=[
|
283 |
"Posture",
|
284 |
"Emotion",
|
|
|
285 |
"Faces",
|
286 |
+
"Facemesh"
|
|
|
287 |
]
|
288 |
)
|
289 |
|
|
|
293 |
demo = gr.Blocks(css=custom_css)
|
294 |
with demo:
|
295 |
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
|
296 |
+
gr.Markdown("<p class='gradio-description'>Upload an image to run high-tech analysis for posture, emotions, faces, and facemesh landmarks.</p>")
|
297 |
tabbed_interface.render()
|
298 |
|
299 |
if __name__ == "__main__":
|