David Driscoll
Video to image, text change
f6a647b
raw
history blame
11.8 kB
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
# -----------------------------
# Configuration
# -----------------------------
# For image processing, always run the analysis (no frame skipping)
SKIP_RATE = 1
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Desired input size for faster inference
DESIRED_SIZE = (640, 480)
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
objects_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval().to(device) # Move model to GPU (if available)
obj_transform = transforms.Compose([transforms.ToTensor()])
# Initialize the FER emotion detector
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
# Draw circles for each landmark using lime green (BGR: (50,205,50))
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (50, 205, 50), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb_small)
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
# Scale landmarks back to the original image size
x = int(lm.x * small_w * (w / small_w))
y = int(lm.y * small_h * (h / small_h))
landmarks.append((x, y))
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb_small)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_objects_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb_small)
img_tensor = obj_transform(image_pil).to(device)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
boxes = []
for box, score in zip(detections["boxes"], detections["scores"]):
if score > threshold:
boxes.append(tuple(box.int().cpu().numpy()))
text = f"Detected {len(boxes)} object(s)" if boxes else "No objects detected"
return boxes, text
def compute_faces_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb_small)
boxes = []
if face_results.detections:
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * small_w)
y = int(bbox.ymin * small_h)
box_w = int(bbox.width * small_w)
box_h = int(bbox.height * small_h)
boxes.append((x, y, x + box_w, y + box_h))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
# -----------------------------
# Main Analysis Functions for Single Image
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image)
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"<div style='color: lime;'>Posture Analysis: {posture_cache['text']}</div>"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
return current_frame, f"<div style='color: lime;'>Emotion Analysis: {emotion_cache['text']}</div>"
def analyze_objects_current(image):
global objects_cache
objects_cache["counter"] += 1
current_frame = np.array(image)
if objects_cache["counter"] % SKIP_RATE == 0 or objects_cache["boxes"] is None:
boxes, text = compute_objects_overlay(image)
objects_cache["boxes"] = boxes
objects_cache["text"] = text
output = current_frame.copy()
if objects_cache["boxes"]:
output = draw_boxes_overlay(output, objects_cache["boxes"], (255, 255, 0))
return output, f"<div style='color: lime;'>Object Detection: {objects_cache['text']}</div>"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"<div style='color: lime;'>Face Detection: {faces_cache['text']}</div>"
def analyze_all(image):
# Run all analyses on the same image
current_frame = np.array(image).copy()
# Posture Analysis
landmarks, posture_text = compute_posture_overlay(image)
if landmarks:
current_frame = draw_posture_overlay(current_frame, landmarks)
# Emotion Analysis
emotion_text = compute_emotion_overlay(image)
# Object Detection
boxes_obj, objects_text = compute_objects_overlay(image)
if boxes_obj:
current_frame = draw_boxes_overlay(current_frame, boxes_obj, (255, 255, 0))
# Face Detection
boxes_face, faces_text = compute_faces_overlay(image)
if boxes_face:
current_frame = draw_boxes_overlay(current_frame, boxes_face, (0, 0, 255))
combined_text = (
f"Posture Analysis: {posture_text}<br>"
f"Emotion Analysis: {emotion_text}<br>"
f"Object Detection: {objects_text}<br>"
f"Face Detection: {faces_text}"
)
combined_text_html = f"<div style='color: lime;'>{combined_text}</div>"
return current_frame, combined_text_html
# -----------------------------
# Custom CSS
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #ffffff;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #ffffff;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
"""
# -----------------------------
# Create Individual Interfaces for Image Processing
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe.",
live=False
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER.",
live=False
)
objects_interface = gr.Interface(
fn=analyze_objects_current,
inputs=gr.Image(label="Upload an Image for Object Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN.",
live=False
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(label="Upload an Image for Face Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe.",
live=False
)
all_interface = gr.Interface(
fn=analyze_all,
inputs=gr.Image(label="Upload an Image for All Inferences"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Combined Analysis")],
title="All Inferences",
description="Runs posture, emotion, object, and face detection all at once.",
live=False
)
# -----------------------------
# Create a Tabbed Interface
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface, all_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces", "All Inferences"]
)
# -----------------------------
# Wrap in a Blocks Layout
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
gr.Markdown(
"<p class='gradio-description'>Upload an image to run analysis for posture, emotions, objects, and faces.</p>"
)
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()