David Driscoll
Remove glow
9a89e03
raw
history blame
13.2 kB
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
from ultralytics import YOLO # YOLOv8 for face detection
from huggingface_hub import hf_hub_download
from supervision import Detections
# -----------------------------
# Configurations
# -----------------------------
SKIP_RATE = 1 # For image processing, always run the analysis
DESIRED_SIZE = (640, 480)
# -----------------------------
# Sample Images (Preset Suggested Photos)
# -----------------------------
SAMPLE_IMAGES = [
"https://upload.wikimedia.org/wikipedia/commons/7/76/Daniel_Diermeier_2020_%28cropped%29.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg/1200px-Gilbert_Stuart_Williamstown_Portrait_of_George_Washington.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/8/8d/President_Barack_Obama.jpg/800px-President_Barack_Obama.jpg",
"https://images.wsj.net/im-98527587?width=1280&size=1",
"https://media.npr.org/assets/img/2023/11/28/dr.buolamwiniheadshot_c-naima-green-1-_custom-05cd4ce4570c688d00cc558d16c76745abd07539.png"
]
# -----------------------------
# Global caches for overlay info and frame counters
# -----------------------------
posture_cache = {"landmarks": None, "text": "Initializing...", "counter": 0}
emotion_cache = {"text": "Initializing...", "counter": 0}
faces_cache = {"boxes": None, "text": "Initializing...", "counter": 0}
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose and Drawing
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
# Initialize the FER emotion detector (using the FER package)
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Download YOLOv8 face detection model from Hugging Face
# -----------------------------
model_path = hf_hub_download(repo_id="arnabdhar/YOLOv8-Face-Detection", filename="model.pt")
yolo_face_model = YOLO(model_path)
# -----------------------------
# Overlay Drawing Functions
# -----------------------------
def draw_posture_overlay(raw_frame, landmarks):
for connection in mp_pose.POSE_CONNECTIONS:
start_idx, end_idx = connection
if start_idx < len(landmarks) and end_idx < len(landmarks):
start_point = landmarks[start_idx]
end_point = landmarks[end_idx]
cv2.line(raw_frame, start_point, end_point, (50, 205, 50), 2)
for (x, y) in landmarks:
cv2.circle(raw_frame, (x, y), 4, (50, 205, 50), -1)
return raw_frame
def draw_boxes_overlay(raw_frame, boxes, color):
for (x1, y1, x2, y2) in boxes:
cv2.rectangle(raw_frame, (x1, y1), (x2, y2), color, 2)
return raw_frame
# -----------------------------
# Heavy (Synchronous) Detection Functions
# -----------------------------
def compute_posture_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
small_h, small_w, _ = frame_bgr_small.shape
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
pose_results = pose.process(frame_rgb_small)
if pose_results.pose_landmarks:
landmarks = []
for lm in pose_results.pose_landmarks.landmark:
x = int(lm.x * small_w * (w / small_w))
y = int(lm.y * small_h * (h / small_h))
landmarks.append((x, y))
text = "Posture detected"
else:
landmarks = []
text = "No posture detected"
return landmarks, text
def compute_emotion_overlay(image):
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_bgr_small = cv2.resize(frame_bgr, DESIRED_SIZE)
frame_rgb_small = cv2.cvtColor(frame_bgr_small, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb_small)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
text = f"{top_emotion} ({score:.2f})"
else:
text = "No face detected"
return text
def compute_faces_overlay(image):
"""
Uses the YOLOv8 face detection model from Hugging Face.
Processes the input image and returns bounding boxes using Supervision Detections.
"""
pil_image = image if isinstance(image, Image.Image) else Image.fromarray(image)
output = yolo_face_model(pil_image)
results = Detections.from_ultralytics(output[0])
boxes = []
if results.xyxy.shape[0] > 0:
for box in results.xyxy:
x1, y1, x2, y2 = map(int, box)
boxes.append((x1, y1, x2, y2))
text = f"Detected {len(boxes)} face(s)"
else:
text = "No faces detected"
return boxes, text
# -----------------------------
# New Facemesh Functions (with connected red lines and mask output)
# (Only changes made here are to add a slider-controlled confidence)
# -----------------------------
def compute_facemesh_overlay(image, confidence=0.5):
"""
Uses MediaPipe Face Mesh to detect and draw facial landmarks.
Draws green dots for landmarks and connects them with thin red lines.
Returns two images:
- annotated: the original image overlaid with the facemesh
- mask: a black background image with only the facemesh drawn
"""
frame_bgr = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w, _ = frame_bgr.shape
# Create a copy for annotated output and a black mask
annotated = frame_bgr.copy()
mask = np.zeros_like(frame_bgr)
# Initialize Face Mesh in static mode with adjustable confidence
face_mesh = mp.solutions.face_mesh.FaceMesh(
static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=confidence
)
results = face_mesh.process(cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
# Convert landmarks to pixel coordinates
landmark_points = []
for lm in face_landmarks.landmark:
x = int(lm.x * w)
y = int(lm.y * h)
landmark_points.append((x, y))
# Draw thin red lines between connected landmarks using the FACEMESH_TESSELATION
for connection in mp.solutions.face_mesh.FACEMESH_TESSELATION:
start_idx, end_idx = connection
if start_idx < len(landmark_points) and end_idx < len(landmark_points):
pt1 = landmark_points[start_idx]
pt2 = landmark_points[end_idx]
cv2.line(annotated, pt1, pt2, (255, 0, 0), 1)
cv2.line(mask, pt1, pt2, (255, 0, 0), 1)
# Draw green dots for each landmark
for pt in landmark_points:
cv2.circle(annotated, pt, 2, (0, 255, 0), -1)
cv2.circle(mask, pt, 2, (0, 255, 0), -1)
text = "Facemesh detected"
else:
text = "No facemesh detected"
face_mesh.close()
return annotated, mask, text
def analyze_facemesh(image, confidence):
annotated_image, mask_image, text = compute_facemesh_overlay(image, confidence)
return (
annotated_image,
mask_image,
f"<div style='color: #00ff00 !important;'>Facemesh Analysis: {text}</div>"
)
# -----------------------------
# Main Analysis Functions for Single Image
# -----------------------------
def analyze_posture_current(image):
global posture_cache
posture_cache["counter"] += 1
current_frame = np.array(image)
if posture_cache["counter"] % SKIP_RATE == 0 or posture_cache["landmarks"] is None:
landmarks, text = compute_posture_overlay(image)
posture_cache["landmarks"] = landmarks
posture_cache["text"] = text
output = current_frame.copy()
if posture_cache["landmarks"]:
output = draw_posture_overlay(output, posture_cache["landmarks"])
return output, f"<div style='color: #00ff00 !important;'>Posture Analysis: {posture_cache['text']}</div>"
def analyze_emotion_current(image):
global emotion_cache
emotion_cache["counter"] += 1
current_frame = np.array(image)
if emotion_cache["counter"] % SKIP_RATE == 0 or emotion_cache["text"] is None:
text = compute_emotion_overlay(image)
emotion_cache["text"] = text
return current_frame, f"<div style='color: #00ff00 !important;'>Emotion Analysis: {emotion_cache['text']}</div>"
def analyze_faces_current(image):
global faces_cache
faces_cache["counter"] += 1
current_frame = np.array(image)
if faces_cache["counter"] % SKIP_RATE == 0 or faces_cache["boxes"] is None:
boxes, text = compute_faces_overlay(image)
faces_cache["boxes"] = boxes
faces_cache["text"] = text
output = current_frame.copy()
if faces_cache["boxes"]:
output = draw_boxes_overlay(output, faces_cache["boxes"], (0, 0, 255))
return output, f"<div style='color: #00ff00 !important;'>Face Detection: {faces_cache['text']}</div>"
# -----------------------------
# Custom CSS (Revamped High-Contrast Neon Theme with Green Glows removed from text)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #121212;
font-family: 'Orbitron', sans-serif;
color: #00ff00 !important;
}
.gradio-container {
background: linear-gradient(135deg, #2d2d2d, #1a1a1a);
border: 2px solid #00ff00;
box-shadow: 0 0 15px #00ff00;
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title, .gradio-description, .tab-item, .tab-item *,
label, .label, .wrap .label, .wrap .input, .wrap .output, .wrap .description {
color: #00ff00 !important;
}
input, button, .output {
border: 1px solid #00ff00;
box-shadow: 0 0 8px #00ff00;
color: #00ff00;
background-color: #1a1a1a;
}
/* Added higher specificity override for all elements within the gradio container */
.gradio-container * {
color: #00ff00 !important;
}
"""
# -----------------------------
# Create Individual Interfaces for Image Processing
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture_current,
inputs=gr.Image(label="Upload an Image for Posture Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Posture Analysis")],
title="<div style='color:#00ff00;'>Posture",
description="<div style='color:#00ff00;'>Detects posture using MediaPipe with connector lines.</div>",
examples=SAMPLE_IMAGES, # clickable examples at bottom
live=False
)
emotion_interface = gr.Interface(
fn=analyze_emotion_current,
inputs=gr.Image(label="Upload an Image for Emotion Analysis"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Emotion Analysis")],
title="<div style='color:#00ff00;'>Emotion",
description="<div style='color:#00ff00;'>Detects facial emotions using FER.</div>",
examples=SAMPLE_IMAGES,
live=False
)
faces_interface = gr.Interface(
fn=analyze_faces_current,
inputs=gr.Image(label="Upload an Image for Face Detection"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.HTML(label="Face Detection")],
title="<div style='color:#00ff00;'>Faces",
description="<div style='color:#00ff00;'>Detects faces using fine-tuned YOLOv8 model.</div>",
examples=SAMPLE_IMAGES,
live=False
)
facemesh_interface = gr.Interface(
fn=analyze_facemesh,
inputs=[
gr.Image(label="Upload an Image for Facemesh"),
gr.Slider(0.0, 1.0, value=0.5, label="Detection Confidence", elem_id="confidence_slider")
],
outputs=[
gr.Image(type="numpy", label="Annotated Output"),
gr.Image(type="numpy", label="Mask Output"),
gr.HTML(label="Facemesh Analysis")
],
title="<div style='color:#00ff00;'>Facemesh",
description="""
<div style='color:#00ff00;'>
Detects facial landmarks using MediaPipe Face Mesh.
<button onclick="document.getElementById('confidence_slider').value = 0.5; document.getElementById('confidence_slider').dispatchEvent(new Event('change'))" style="margin-left:10px;">Reset to Default</button>
</div>
""",
examples=[[img, 0.5] for img in SAMPLE_IMAGES],
live=False
)
tabbed_interface = gr.TabbedInterface(
interface_list=[
posture_interface,
emotion_interface,
faces_interface,
facemesh_interface
],
tab_names=[
"Posture",
"Emotion",
"Faces",
"Facemesh"
]
)
# -----------------------------
# Wrap in a Blocks Layout and Launch
# -----------------------------
demo = gr.Blocks(css=custom_css, theme=None)
with demo:
gr.Markdown("<h1 class='gradio-title'>Multi-Analysis Image App</h1>")
gr.Markdown("<p class='gradio-description'>Upload an image to run analysis for posture, emotions, faces, and facemesh landmarks.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()