David Driscoll
Lag reduction
2553966
raw
history blame
8.71 kB
import gradio as gr
import cv2
import numpy as np
import torch
from torchvision import models, transforms
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from PIL import Image
import mediapipe as mp
from fer import FER # Facial emotion recognition
from concurrent.futures import ThreadPoolExecutor
# -----------------------------
# Global Asynchronous Executor & Caches
# -----------------------------
executor = ThreadPoolExecutor(max_workers=4)
latest_results = {
"posture": None,
"emotion": None,
"objects": None,
"faces": None
}
futures = {
"posture": None,
"emotion": None,
"objects": None,
"faces": None
}
def async_analyze(key, func, image):
"""
Runs the heavy detection function 'func' in a background thread.
Returns the last computed result (if available) so that the output
FPS remains high even if the detection lags.
"""
if futures[key] is None or futures[key].done():
futures[key] = executor.submit(func, image)
if futures[key].done():
latest_results[key] = futures[key].result()
# Return latest result if available; otherwise, compute synchronously
return latest_results.get(key, func(image))
# -----------------------------
# Initialize Models and Helpers
# -----------------------------
# MediaPipe Pose for posture analysis
mp_pose = mp.solutions.pose
pose = mp_pose.Pose()
mp_drawing = mp.solutions.drawing_utils
# MediaPipe Face Detection for face detection
mp_face_detection = mp.solutions.face_detection
face_detection = mp_face_detection.FaceDetection(min_detection_confidence=0.5)
# Object Detection Model: Faster R-CNN (pretrained on COCO)
object_detection_model = models.detection.fasterrcnn_resnet50_fpn(
weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT
)
object_detection_model.eval()
obj_transform = transforms.Compose([transforms.ToTensor()])
# Facial Emotion Detection using FER (requires TensorFlow)
emotion_detector = FER(mtcnn=True)
# -----------------------------
# Heavy (Synchronous) Analysis Functions
# -----------------------------
def _analyze_posture(image):
# Convert from PIL (RGB) to OpenCV BGR format
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
posture_result = "No posture detected"
pose_results = pose.process(frame_rgb)
if pose_results.pose_landmarks:
posture_result = "Posture detected"
mp_drawing.draw_landmarks(
output_frame, pose_results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0, 255, 0), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(0, 0, 255), thickness=2)
)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Posture Analysis: {posture_result}"
def _analyze_emotion(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
emotions = emotion_detector.detect_emotions(frame_rgb)
if emotions:
top_emotion, score = max(emotions[0]["emotions"].items(), key=lambda x: x[1])
emotion_text = f"{top_emotion} ({score:.2f})"
else:
emotion_text = "No face detected for emotion analysis"
annotated_image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Emotion Analysis: {emotion_text}"
def _analyze_objects(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(frame_rgb)
img_tensor = obj_transform(image_pil)
with torch.no_grad():
detections = object_detection_model([img_tensor])[0]
threshold = 0.8
detected_boxes = detections["boxes"][detections["scores"] > threshold]
for box in detected_boxes:
box = box.int().cpu().numpy()
cv2.rectangle(output_frame, (box[0], box[1]), (box[2], box[3]), (255, 255, 0), 2)
object_result = f"Detected {len(detected_boxes)} object(s)" if len(detected_boxes) else "No objects detected"
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Object Detection: {object_result}"
def _analyze_faces(image):
frame = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
output_frame = frame.copy()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_results = face_detection.process(frame_rgb)
face_result = "No faces detected"
if face_results.detections:
face_result = f"Detected {len(face_results.detections)} face(s)"
h, w, _ = output_frame.shape
for detection in face_results.detections:
bbox = detection.location_data.relative_bounding_box
x = int(bbox.xmin * w)
y = int(bbox.ymin * h)
box_w = int(bbox.width * w)
box_h = int(bbox.height * h)
cv2.rectangle(output_frame, (x, y), (x + box_w, y + box_h), (0, 0, 255), 2)
annotated_image = cv2.cvtColor(output_frame, cv2.COLOR_BGR2RGB)
return annotated_image, f"Face Detection: {face_result}"
# -----------------------------
# Asynchronous (Fast) Analysis Functions
# -----------------------------
def analyze_posture(image):
return async_analyze("posture", _analyze_posture, image)
def analyze_emotion(image):
return async_analyze("emotion", _analyze_emotion, image)
def analyze_objects(image):
return async_analyze("objects", _analyze_objects, image)
def analyze_faces(image):
return async_analyze("faces", _analyze_faces, image)
# -----------------------------
# Custom CSS for a High-Tech Look (White Font)
# -----------------------------
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700&display=swap');
body {
background-color: #0e0e0e;
color: #ffffff;
font-family: 'Orbitron', sans-serif;
margin: 0;
padding: 0;
}
.gradio-container {
background: linear-gradient(135deg, #1e1e2f, #3e3e55);
border-radius: 10px;
padding: 20px;
max-width: 1200px;
margin: auto;
}
.gradio-title {
font-size: 2.5em;
color: #ffffff;
text-align: center;
margin-bottom: 0.2em;
}
.gradio-description {
font-size: 1.2em;
text-align: center;
margin-bottom: 1em;
color: #ffffff;
}
"""
# -----------------------------
# Create Individual Interfaces for Each Analysis
# -----------------------------
posture_interface = gr.Interface(
fn=analyze_posture,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Posture"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Posture Analysis")],
title="Posture Analysis",
description="Detects your posture using MediaPipe.",
live=True
)
emotion_interface = gr.Interface(
fn=analyze_emotion,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Emotion Analysis")],
title="Emotion Analysis",
description="Detects facial emotions using FER.",
live=True
)
objects_interface = gr.Interface(
fn=analyze_objects,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture the Scene"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Object Detection")],
title="Object Detection",
description="Detects objects using a pretrained Faster R-CNN.",
live=True
)
faces_interface = gr.Interface(
fn=analyze_faces,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Capture Your Face"),
outputs=[gr.Image(type="numpy", label="Annotated Output"), gr.Textbox(label="Face Detection")],
title="Face Detection",
description="Detects faces using MediaPipe.",
live=True
)
# -----------------------------
# Create a Tabbed Interface for All Analyses
# -----------------------------
tabbed_interface = gr.TabbedInterface(
interface_list=[posture_interface, emotion_interface, objects_interface, faces_interface],
tab_names=["Posture", "Emotion", "Objects", "Faces"]
)
# -----------------------------
# Wrap Everything in a Blocks Layout with Custom CSS
# -----------------------------
demo = gr.Blocks(css=custom_css)
with demo:
gr.Markdown("<h1 class='gradio-title'>Real-Time Multi-Analysis App</h1>")
gr.Markdown("<p class='gradio-description'>Experience a high-tech cinematic interface for real-time analysis of your posture, emotions, objects, and faces using your webcam.</p>")
tabbed_interface.render()
if __name__ == "__main__":
demo.launch()