Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +536 -0
- requirements.txt +31 -0
app.py
ADDED
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import glob
|
3 |
+
import time
|
4 |
+
import threading
|
5 |
+
import requests
|
6 |
+
import wikipedia
|
7 |
+
import torch
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from io import BytesIO
|
11 |
+
from PIL import Image
|
12 |
+
import base64 # Added import
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
from ultralytics import YOLO
|
16 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
17 |
+
from diffusers import MarigoldDepthPipeline # Updated import for depth model
|
18 |
+
from realesrgan import RealESRGANer
|
19 |
+
from basicsr.archs.rrdbnet_arch import RRDBNet
|
20 |
+
|
21 |
+
# Set environment variable for PyTorch MPS fallback before importing torch
|
22 |
+
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'
|
23 |
+
|
24 |
+
# Initialize Models
|
25 |
+
def initialize_models():
|
26 |
+
models = {}
|
27 |
+
|
28 |
+
# Device detection
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
device = 'cuda'
|
31 |
+
elif torch.backends.mps.is_available():
|
32 |
+
device = 'mps'
|
33 |
+
else:
|
34 |
+
device = 'cpu'
|
35 |
+
models['device'] = device
|
36 |
+
|
37 |
+
print(f"Using device: {device}")
|
38 |
+
|
39 |
+
# Initialize the RoBERTa model for question answering
|
40 |
+
try:
|
41 |
+
models['qa_pipeline'] = pipeline(
|
42 |
+
"question-answering", model="deepset/roberta-base-squad2", device=0 if device == 'cuda' else -1)
|
43 |
+
print("RoBERTa QA pipeline initialized.")
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error initializing the RoBERTa model: {e}")
|
46 |
+
models['qa_pipeline'] = None
|
47 |
+
|
48 |
+
# Initialize the Gemma model
|
49 |
+
try:
|
50 |
+
models['gemma_tokenizer'] = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
51 |
+
models['gemma_model'] = AutoModelForCausalLM.from_pretrained(
|
52 |
+
"google/gemma-2-2b-it",
|
53 |
+
device_map="auto",
|
54 |
+
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32
|
55 |
+
)
|
56 |
+
print("Gemma model initialized.")
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error initializing the Gemma model: {e}")
|
59 |
+
models['gemma_model'] = None
|
60 |
+
|
61 |
+
# Initialize the depth estimation model using MarigoldDepthPipeline exactly as per your sample
|
62 |
+
try:
|
63 |
+
if device == 'cuda':
|
64 |
+
models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
|
65 |
+
"prs-eth/marigold-depth-lcm-v1-0",
|
66 |
+
variant="fp16",
|
67 |
+
torch_dtype=torch.float16
|
68 |
+
).to('cuda')
|
69 |
+
else:
|
70 |
+
# For CPU or MPS devices, keep on 'cpu' to avoid unsupported operators
|
71 |
+
models['depth_pipe'] = MarigoldDepthPipeline.from_pretrained(
|
72 |
+
"prs-eth/marigold-depth-lcm-v1-0",
|
73 |
+
torch_dtype=torch.float32
|
74 |
+
).to('cpu')
|
75 |
+
print("Depth estimation model initialized.")
|
76 |
+
except Exception as e:
|
77 |
+
error_message = f"Error initializing the depth estimation model: {e}"
|
78 |
+
print(error_message)
|
79 |
+
models['depth_pipe'] = None
|
80 |
+
models['depth_init_error'] = error_message # Store the error message
|
81 |
+
|
82 |
+
# Initialize the upscaling model
|
83 |
+
try:
|
84 |
+
upscaler_model_path = 'weights/RealESRGAN_x4plus.pth' # Ensure this path is correct
|
85 |
+
if not os.path.exists(upscaler_model_path):
|
86 |
+
print(f"Upscaling model weights not found at {upscaler_model_path}. Please download them.")
|
87 |
+
models['upscaler'] = None
|
88 |
+
else:
|
89 |
+
# Define the model architecture
|
90 |
+
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
91 |
+
num_block=23, num_grow_ch=32, scale=4)
|
92 |
+
|
93 |
+
# Initialize RealESRGANer
|
94 |
+
models['upscaler'] = RealESRGANer(
|
95 |
+
scale=4,
|
96 |
+
model_path=upscaler_model_path,
|
97 |
+
model=model,
|
98 |
+
pre_pad=0,
|
99 |
+
half=(device == 'cuda'),
|
100 |
+
device=device
|
101 |
+
)
|
102 |
+
print("Real-ESRGAN upscaler initialized.")
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error initializing the upscaling model: {e}")
|
105 |
+
models['upscaler'] = None
|
106 |
+
|
107 |
+
# Initialize YOLO model
|
108 |
+
try:
|
109 |
+
source_weights_path = "/Users/David/Downloads/WheelOfFortuneLab-DavidDriscoll/Eurybia1.3/mbari_315k_yolov8.pt"
|
110 |
+
if not os.path.exists(source_weights_path):
|
111 |
+
print(f"YOLO weights not found at {source_weights_path}. Please download them.")
|
112 |
+
models['yolo_model'] = None
|
113 |
+
else:
|
114 |
+
models['yolo_model'] = YOLO(source_weights_path)
|
115 |
+
print("YOLO model initialized.")
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error initializing YOLO model: {e}")
|
118 |
+
models['yolo_model'] = None
|
119 |
+
|
120 |
+
return models
|
121 |
+
|
122 |
+
models = initialize_models()
|
123 |
+
|
124 |
+
# Utility Functions
|
125 |
+
def search_class_description(class_name):
|
126 |
+
wikipedia.set_lang("en")
|
127 |
+
wikipedia.set_rate_limiting(True)
|
128 |
+
description = ""
|
129 |
+
|
130 |
+
try:
|
131 |
+
page = wikipedia.page(class_name)
|
132 |
+
if page:
|
133 |
+
description = page.content[:5000] # Get more content
|
134 |
+
except Exception as e:
|
135 |
+
print(f"Error fetching description for {class_name}: {e}")
|
136 |
+
|
137 |
+
return description
|
138 |
+
|
139 |
+
def search_class_image(class_name):
|
140 |
+
wikipedia.set_lang("en")
|
141 |
+
wikipedia.set_rate_limiting(True)
|
142 |
+
img_url = ""
|
143 |
+
|
144 |
+
try:
|
145 |
+
page = wikipedia.page(class_name)
|
146 |
+
if page:
|
147 |
+
for img in page.images:
|
148 |
+
if img.lower().endswith(('.jpg', '.jpeg', '.png', '.gif')):
|
149 |
+
img_url = img
|
150 |
+
break
|
151 |
+
except Exception as e:
|
152 |
+
print(f"Error fetching image for {class_name}: {e}")
|
153 |
+
|
154 |
+
return img_url
|
155 |
+
|
156 |
+
def process_image(image):
|
157 |
+
if models['yolo_model'] is None:
|
158 |
+
return None, "YOLO model is not initialized.", "YOLO model is not initialized.", [], None
|
159 |
+
|
160 |
+
try:
|
161 |
+
if image is None:
|
162 |
+
return None, "No image uploaded.", "No image uploaded.", [], None
|
163 |
+
|
164 |
+
# Convert Gradio Image to OpenCV format
|
165 |
+
image_np = np.array(image)
|
166 |
+
if image_np.dtype != np.uint8:
|
167 |
+
image_np = image_np.astype(np.uint8)
|
168 |
+
|
169 |
+
if len(image_np.shape) != 3 or image_np.shape[2] != 3:
|
170 |
+
return None, "Invalid image format. Please upload a RGB image.", "Invalid image format. Please upload a RGB image.", [], None
|
171 |
+
|
172 |
+
image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
|
173 |
+
|
174 |
+
# Store the original image before drawing bounding boxes
|
175 |
+
original_image_cv = image_cv.copy()
|
176 |
+
original_image_pil = Image.fromarray(cv2.cvtColor(original_image_cv, cv2.COLOR_BGR2RGB))
|
177 |
+
|
178 |
+
# Perform YOLO prediction
|
179 |
+
results = models['yolo_model'].predict(
|
180 |
+
source=image_cv, conf=0.075)[0] # Lowered the threshold
|
181 |
+
|
182 |
+
bounding_boxes = []
|
183 |
+
image_processed = image_cv.copy()
|
184 |
+
|
185 |
+
if results.boxes is not None:
|
186 |
+
for box in results.boxes:
|
187 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].tolist())
|
188 |
+
class_name = models['yolo_model'].names[int(box.cls)]
|
189 |
+
confidence = box.conf.item() * 100 # Convert to percentage
|
190 |
+
|
191 |
+
bounding_boxes.append({
|
192 |
+
"coords": (x1, y1, x2, y2),
|
193 |
+
"class_name": class_name,
|
194 |
+
"confidence": confidence
|
195 |
+
})
|
196 |
+
|
197 |
+
cv2.rectangle(image_processed, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
198 |
+
cv2.putText(image_processed, f'{class_name} {confidence:.2f}%',
|
199 |
+
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
200 |
+
0.9, (0, 0, 255), 2)
|
201 |
+
|
202 |
+
# Convert back to PIL Image
|
203 |
+
processed_image = Image.fromarray(cv2.cvtColor(image_processed, cv2.COLOR_BGR2RGB))
|
204 |
+
|
205 |
+
# Prepare detection info
|
206 |
+
if bounding_boxes:
|
207 |
+
detection_info = "\n".join(
|
208 |
+
[f'{box["class_name"]}: {box["confidence"]:.2f}%' for box in bounding_boxes]
|
209 |
+
)
|
210 |
+
else:
|
211 |
+
detection_info = "No detections found."
|
212 |
+
|
213 |
+
# Prepare detection details as Markdown
|
214 |
+
if bounding_boxes:
|
215 |
+
details = ""
|
216 |
+
for idx, box in enumerate(bounding_boxes):
|
217 |
+
class_name = box['class_name']
|
218 |
+
confidence = box['confidence']
|
219 |
+
description = search_class_description(class_name)
|
220 |
+
img_url = search_class_image(class_name)
|
221 |
+
img_md = ""
|
222 |
+
if img_url:
|
223 |
+
try:
|
224 |
+
headers = {
|
225 |
+
'User-Agent': 'MyApp/1.0 (https://example.com/contact; myemail@example.com)'
|
226 |
+
}
|
227 |
+
response = requests.get(img_url, headers=headers, timeout=10)
|
228 |
+
img_data = response.content
|
229 |
+
img = Image.open(BytesIO(img_data)).convert("RGB")
|
230 |
+
img.thumbnail((400, 400)) # Resize for faster loading
|
231 |
+
buffered = BytesIO()
|
232 |
+
img.save(buffered, format="PNG")
|
233 |
+
img_str = base64.b64encode(buffered.getvalue()).decode()
|
234 |
+
img_md = f"\n\n"
|
235 |
+
except Exception as e:
|
236 |
+
print(f"Error fetching image for {class_name}: {e}")
|
237 |
+
details += f"### {idx+1}. {class_name} ({confidence:.2f}%)\n\n"
|
238 |
+
if description:
|
239 |
+
details += f"{description}\n\n"
|
240 |
+
if img_md:
|
241 |
+
details += f"{img_md}\n\n"
|
242 |
+
detection_details_md = details
|
243 |
+
else:
|
244 |
+
detection_details_md = "No detections to show."
|
245 |
+
|
246 |
+
return processed_image, detection_info, detection_details_md, bounding_boxes, original_image_pil
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Error processing image: {e}")
|
249 |
+
return None, f"Error processing image: {e}", f"Error processing image: {e}", [], None
|
250 |
+
|
251 |
+
def ask_eurybia(question, state):
|
252 |
+
if not question.strip():
|
253 |
+
return "Please enter a valid question.", state
|
254 |
+
|
255 |
+
if not state['bounding_boxes']:
|
256 |
+
return "No detected objects to ask about.", state
|
257 |
+
|
258 |
+
# Combine descriptions of all detected objects as context
|
259 |
+
context = ""
|
260 |
+
for box in state['bounding_boxes']:
|
261 |
+
description = search_class_description(box['class_name'])
|
262 |
+
if description:
|
263 |
+
context += description + "\n"
|
264 |
+
|
265 |
+
if not context.strip():
|
266 |
+
return "No sufficient context available to answer the question.", state
|
267 |
+
|
268 |
+
try:
|
269 |
+
if models['qa_pipeline'] is None:
|
270 |
+
return "QA pipeline is not initialized.", state
|
271 |
+
|
272 |
+
answer = models['qa_pipeline'](question=question, context=context)
|
273 |
+
answer_text = answer['answer'].strip()
|
274 |
+
if not answer_text:
|
275 |
+
return "I couldn't find an answer to that question based on the detected objects.", state
|
276 |
+
return answer_text, state
|
277 |
+
except Exception as e:
|
278 |
+
print(f"Error during question answering: {e}")
|
279 |
+
return f"Error during question answering: {e}", state
|
280 |
+
|
281 |
+
def enhance_image(cropped_image_pil):
|
282 |
+
if models['upscaler'] is None:
|
283 |
+
return None, "Upscaling model is not initialized."
|
284 |
+
|
285 |
+
try:
|
286 |
+
input_image = cropped_image_pil.convert("RGB")
|
287 |
+
img = np.array(input_image)
|
288 |
+
|
289 |
+
# Run the model to enhance the image
|
290 |
+
output, _ = models['upscaler'].enhance(img, outscale=4)
|
291 |
+
|
292 |
+
enhanced_image = Image.fromarray(output)
|
293 |
+
|
294 |
+
return enhanced_image, "Image enhanced successfully."
|
295 |
+
except Exception as e:
|
296 |
+
print(f"Error during image enhancement: {e}")
|
297 |
+
return None, f"Error during image enhancement: {e}"
|
298 |
+
|
299 |
+
def run_depth_prediction(original_image):
|
300 |
+
if models['depth_pipe'] is None:
|
301 |
+
error_msg = models.get('depth_init_error', "Depth estimation model is not initialized.")
|
302 |
+
return None, error_msg
|
303 |
+
|
304 |
+
try:
|
305 |
+
if original_image is None:
|
306 |
+
return None, "No image uploaded for depth prediction."
|
307 |
+
|
308 |
+
# Prepare the image
|
309 |
+
input_image = original_image.convert("RGB")
|
310 |
+
|
311 |
+
# Run the depth pipeline
|
312 |
+
result = models['depth_pipe'](input_image)
|
313 |
+
|
314 |
+
# Access the depth prediction
|
315 |
+
depth_prediction = result.prediction # Adjust based on sample code
|
316 |
+
|
317 |
+
# Visualize the depth map
|
318 |
+
vis_depth = models['depth_pipe'].image_processor.visualize_depth(depth_prediction)
|
319 |
+
|
320 |
+
# Ensure vis_depth is a list and extract the first image
|
321 |
+
if isinstance(vis_depth, list) and len(vis_depth) > 0:
|
322 |
+
vis_depth_image = vis_depth[0]
|
323 |
+
else:
|
324 |
+
vis_depth_image = vis_depth # Fallback if not a list
|
325 |
+
|
326 |
+
return vis_depth_image, "Depth prediction completed."
|
327 |
+
except Exception as e:
|
328 |
+
print(f"Error during depth prediction: {e}")
|
329 |
+
return None, f"Error during depth prediction: {e}"
|
330 |
+
|
331 |
+
# Gradio Interface Components
|
332 |
+
with gr.Blocks() as demo:
|
333 |
+
gr.Markdown("# Eurybia Mini - Object Detection and Analysis Tool")
|
334 |
+
|
335 |
+
with gr.Tab("Upload & Process"):
|
336 |
+
with gr.Row():
|
337 |
+
with gr.Column():
|
338 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
339 |
+
process_button = gr.Button("Process Image")
|
340 |
+
clear_button = gr.Button("Clear")
|
341 |
+
with gr.Column():
|
342 |
+
processed_image = gr.Image(type="pil", label="Processed Image")
|
343 |
+
detection_info = gr.Textbox(label="Detection Information", lines=10)
|
344 |
+
|
345 |
+
with gr.Tab("Detection Details"):
|
346 |
+
with gr.Accordion("Click to see detection details", open=False):
|
347 |
+
detection_details_md = gr.Markdown("No detections to show.")
|
348 |
+
|
349 |
+
with gr.Tab("Ask Eurybia"):
|
350 |
+
with gr.Row():
|
351 |
+
with gr.Column():
|
352 |
+
question_input = gr.Textbox(label="Ask a question about the detected objects")
|
353 |
+
ask_button = gr.Button("Ask Eurybia")
|
354 |
+
with gr.Column():
|
355 |
+
answer_output = gr.Markdown(label="Eurybia's Answer")
|
356 |
+
|
357 |
+
with gr.Tab("Depth Estimation"):
|
358 |
+
with gr.Row():
|
359 |
+
with gr.Column():
|
360 |
+
depth_button = gr.Button("Run Depth Prediction")
|
361 |
+
with gr.Column():
|
362 |
+
depth_output = gr.Image(type="pil", label="Depth Map")
|
363 |
+
depth_status = gr.Textbox(label="Status", lines=2)
|
364 |
+
|
365 |
+
# Display error message if depth estimation model failed to initialize
|
366 |
+
if models.get('depth_init_error'):
|
367 |
+
gr.Markdown(f"**Depth Estimation Initialization Error:** {models['depth_init_error']}")
|
368 |
+
|
369 |
+
with gr.Tab("Enhance Detected Objects"):
|
370 |
+
if models['yolo_model'] is not None and models['upscaler'] is not None:
|
371 |
+
with gr.Row():
|
372 |
+
detected_objects = gr.Dropdown(choices=[], label="Select Detected Object", interactive=True)
|
373 |
+
enhance_btn = gr.Button("Enhance Image")
|
374 |
+
with gr.Column():
|
375 |
+
enhanced_image = gr.Image(type="pil", label="Enhanced Image")
|
376 |
+
enhance_status = gr.Textbox(label="Status", lines=2)
|
377 |
+
else:
|
378 |
+
gr.Markdown("**Warning:** YOLO model or Upscaling model is not initialized. Image enhancement functionality will be unavailable.")
|
379 |
+
|
380 |
+
with gr.Tab("Credits"):
|
381 |
+
gr.Markdown("""
|
382 |
+
# Credits and Licensing Information
|
383 |
+
|
384 |
+
This project utilizes various open-source libraries, tools, pretrained models, and datasets. Below is the list of components used and their respective credits/licenses:
|
385 |
+
|
386 |
+
## Libraries
|
387 |
+
- **Python** - Python Software Foundation License (PSF License)
|
388 |
+
- **Gradio** - Licensed under the Apache License 2.0
|
389 |
+
- **Torch (PyTorch)** - Licensed under the BSD 3-Clause License
|
390 |
+
- **OpenCV (cv2)** - Licensed under the Apache License 2.0
|
391 |
+
- **NumPy** - Licensed under the BSD License
|
392 |
+
- **Pillow (PIL)** - Licensed under the HPND License
|
393 |
+
- **Requests** - Licensed under the Apache License 2.0
|
394 |
+
- **Wikipedia API** - Licensed under the MIT License
|
395 |
+
- **Transformers** - Licensed under the Apache License 2.0
|
396 |
+
- **Diffusers** - Licensed under the Apache License 2.0
|
397 |
+
- **Real-ESRGAN** - Licensed under the MIT License
|
398 |
+
- **BasicSR** - Licensed under the Apache License 2.0
|
399 |
+
- **Ultralytics YOLO** - Licensed under the GPL-3.0 License
|
400 |
+
|
401 |
+
## Pretrained Models
|
402 |
+
- **deepset/roberta-base-squad2 (RoBERTa)** - Model provided by Hugging Face under the Apache License 2.0.
|
403 |
+
- **google/gemma-2-2b-it** - Model provided by Hugging Face under the Apache License 2.0.
|
404 |
+
- **prs-eth/marigold-depth-lcm-v1-0** - Licensed under the Apache License 2.0.
|
405 |
+
- **Real-ESRGAN model weights (RealESRGAN_x4plus.pth)** - Distributed under the MIT License.
|
406 |
+
- **FathomNet MBARI 315K YOLOv8 Model**:
|
407 |
+
- **Dataset**: Sourced from [FathomNet](https://fathomnet.org).
|
408 |
+
- **Model**: Derived from MBARIβs curated dataset of 315,000 marine annotations.
|
409 |
+
- **License**: Dataset and models adhere to MBARIβs Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
|
410 |
+
|
411 |
+
## Datasets
|
412 |
+
- **FathomNet MBARI Dataset**:
|
413 |
+
- A large-scale dataset for marine biodiversity image annotations.
|
414 |
+
- All content adheres to the [CC BY-NC 4.0 License](https://creativecommons.org/licenses/by-nc/4.0/).
|
415 |
+
|
416 |
+
## Acknowledgments
|
417 |
+
- **Ultralytics YOLO**: For the YOLOv8 architecture used for object detection.
|
418 |
+
- **FathomNet and MBARI**: For providing the marine dataset and annotations that support object detection in underwater imagery.
|
419 |
+
- **Gradio**: For providing an intuitive interface for machine learning applications.
|
420 |
+
- **Hugging Face**: For pretrained models and pipelines (e.g., Transformers, Diffusers).
|
421 |
+
- **Real-ESRGAN**: For image enhancement and upscaling models.
|
422 |
+
- **Wikipedia API**: For fetching object descriptions and images.
|
423 |
+
""")
|
424 |
+
|
425 |
+
# Hidden state to store bounding boxes, original and processed images
|
426 |
+
state = gr.State({"bounding_boxes": [], "last_image": None, "original_image": None})
|
427 |
+
|
428 |
+
# Event Handlers
|
429 |
+
def on_process_image(image, state):
|
430 |
+
processed_img, info, details, bounding_boxes, original_image_pil = process_image(image)
|
431 |
+
if processed_img is not None:
|
432 |
+
# Update the state with new bounding boxes and images
|
433 |
+
state['bounding_boxes'] = bounding_boxes
|
434 |
+
state['last_image'] = processed_img
|
435 |
+
state['original_image'] = original_image_pil
|
436 |
+
# Update the dropdown choices for detected objects
|
437 |
+
choices = [f"{idx+1}. {box['class_name']} ({box['confidence']:.2f}%)" for idx, box in enumerate(bounding_boxes)]
|
438 |
+
else:
|
439 |
+
choices = []
|
440 |
+
return processed_img, info, details, gr.update(choices=choices), state
|
441 |
+
|
442 |
+
process_button.click(
|
443 |
+
on_process_image,
|
444 |
+
inputs=[image_input, state],
|
445 |
+
outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
|
446 |
+
)
|
447 |
+
|
448 |
+
def on_clear(state):
|
449 |
+
state = {"bounding_boxes": [], "last_image": None, "original_image": None}
|
450 |
+
return None, "No detections found.", "No detections to show.", gr.update(choices=[]), state
|
451 |
+
|
452 |
+
clear_button.click(
|
453 |
+
on_clear,
|
454 |
+
inputs=state,
|
455 |
+
outputs=[processed_image, detection_info, detection_details_md, detected_objects, state]
|
456 |
+
)
|
457 |
+
|
458 |
+
def on_ask_eurybia(question, state):
|
459 |
+
answer, state = ask_eurybia(question, state)
|
460 |
+
return answer, state
|
461 |
+
|
462 |
+
ask_button.click(
|
463 |
+
on_ask_eurybia,
|
464 |
+
inputs=[question_input, state],
|
465 |
+
outputs=[answer_output, state]
|
466 |
+
)
|
467 |
+
|
468 |
+
def on_depth_prediction(state):
|
469 |
+
original_image = state.get('original_image')
|
470 |
+
depth_img, status = run_depth_prediction(original_image)
|
471 |
+
return depth_img, status
|
472 |
+
|
473 |
+
depth_button.click(
|
474 |
+
on_depth_prediction,
|
475 |
+
inputs=state,
|
476 |
+
outputs=[depth_output, depth_status]
|
477 |
+
)
|
478 |
+
|
479 |
+
def on_enhance_image(selected_object, state):
|
480 |
+
if not selected_object:
|
481 |
+
return None, "No object selected.", state
|
482 |
+
|
483 |
+
try:
|
484 |
+
idx = int(selected_object.split('.')[0]) - 1
|
485 |
+
box = state['bounding_boxes'][idx]
|
486 |
+
class_name = box['class_name']
|
487 |
+
x1, y1, x2, y2 = box['coords']
|
488 |
+
|
489 |
+
if not state.get('last_image'):
|
490 |
+
return None, "Processed image is not available.", state
|
491 |
+
|
492 |
+
# Ensure processed_image is stored in state
|
493 |
+
processed_img_pil = state['last_image']
|
494 |
+
if not isinstance(processed_img_pil, Image.Image):
|
495 |
+
return None, "Processed image is in an unsupported format.", state
|
496 |
+
|
497 |
+
# Convert processed_image to OpenCV format with checks
|
498 |
+
processed_img_cv = np.array(processed_img_pil)
|
499 |
+
if processed_img_cv.dtype != np.uint8:
|
500 |
+
processed_img_cv = processed_img_cv.astype(np.uint8)
|
501 |
+
|
502 |
+
if len(processed_img_cv.shape) != 3 or processed_img_cv.shape[2] != 3:
|
503 |
+
return None, "Invalid processed image format.", state
|
504 |
+
|
505 |
+
processed_img_cv = cv2.cvtColor(processed_img_cv, cv2.COLOR_RGB2BGR)
|
506 |
+
|
507 |
+
# Crop the detected object from the processed image
|
508 |
+
cropped_img_cv = processed_img_cv[y1:y2, x1:x2]
|
509 |
+
if cropped_img_cv.size == 0:
|
510 |
+
return None, "Cropped image is empty.", state
|
511 |
+
|
512 |
+
cropped_img_pil = Image.fromarray(cv2.cvtColor(cropped_img_cv, cv2.COLOR_BGR2RGB))
|
513 |
+
|
514 |
+
# Enhance the cropped image
|
515 |
+
enhanced_img, status = enhance_image(cropped_img_pil)
|
516 |
+
return enhanced_img, status, state
|
517 |
+
except Exception as e:
|
518 |
+
return None, f"Error: {e}", state
|
519 |
+
|
520 |
+
if models['yolo_model'] is not None and models['upscaler'] is not None:
|
521 |
+
enhance_btn.click(
|
522 |
+
on_enhance_image,
|
523 |
+
inputs=[detected_objects, state],
|
524 |
+
outputs=[enhanced_image, enhance_status, state]
|
525 |
+
)
|
526 |
+
|
527 |
+
# Optional: Add a note if the depth model isn't initialized
|
528 |
+
if models['depth_pipe'] is None and not models.get('depth_init_error'):
|
529 |
+
gr.Markdown("**Warning:** Depth estimation model is not initialized. Depth prediction functionality will be unavailable.")
|
530 |
+
|
531 |
+
# Optional: Add a note if the upscaler isn't initialized
|
532 |
+
if models['upscaler'] is None:
|
533 |
+
gr.Markdown("**Warning:** Upscaling model is not initialized. Image enhancement functionality will be unavailable.")
|
534 |
+
|
535 |
+
# Launch the Gradio app
|
536 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core Libraries
|
2 |
+
numpy==1.23.5
|
3 |
+
opencv-python==4.8.0.74
|
4 |
+
Pillow==10.0.0
|
5 |
+
requests==2.31.0
|
6 |
+
wikipedia==1.4.0
|
7 |
+
|
8 |
+
# PyTorch
|
9 |
+
torch==2.0.1
|
10 |
+
|
11 |
+
# Hugging Face Ecosystem
|
12 |
+
transformers==4.31.0
|
13 |
+
huggingface-hub==0.14.1
|
14 |
+
diffusers==0.19.3
|
15 |
+
accelerate==0.20.3
|
16 |
+
|
17 |
+
# Real-ESRGAN and Dependencies
|
18 |
+
realesrgan==0.3.0
|
19 |
+
basicsr==1.4.2
|
20 |
+
|
21 |
+
# Ultralytics (YOLO)
|
22 |
+
ultralytics==8.0.120
|
23 |
+
|
24 |
+
# Gradio
|
25 |
+
gradio==3.40.0
|
26 |
+
|
27 |
+
# Additional Packages (Ensure Compatibility)
|
28 |
+
datasets==2.8.0 # Example version; adjust as needed
|
29 |
+
protobuf==3.20.3 # Compatible with <4
|
30 |
+
click==8.0.4 # Compatible with <8.1
|
31 |
+
pydantic==1.10.7 # Compatible with ~=1.0
|