ddlowkey commited on
Commit
de72057
·
verified ·
1 Parent(s): d7ec432

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +410 -410
app.py CHANGED
@@ -1,410 +1,410 @@
1
- import gradio as gr
2
- import spaces
3
- from gradio_litmodel3d import LitModel3D
4
-
5
- import os
6
- import shutil
7
- os.environ['SPCONV_ALGO'] = 'native'
8
- from typing import *
9
- import torch
10
- import numpy as np
11
- import imageio
12
- from easydict import EasyDict as edict
13
- from PIL import Image
14
- from trellis.pipelines import TrellisImageTo3DPipeline
15
- from trellis.representations import Gaussian, MeshExtractResult
16
- from trellis.utils import render_utils, postprocessing_utils
17
-
18
-
19
- MAX_SEED = np.iinfo(np.int32).max
20
- TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
21
- os.makedirs(TMP_DIR, exist_ok=True)
22
-
23
-
24
- def start_session(req: gr.Request):
25
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
26
- os.makedirs(user_dir, exist_ok=True)
27
-
28
-
29
- def end_session(req: gr.Request):
30
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
31
- shutil.rmtree(user_dir)
32
-
33
-
34
- def preprocess_image(image: Image.Image) -> Image.Image:
35
- """
36
- Preprocess the input image.
37
-
38
- Args:
39
- image (Image.Image): The input image.
40
-
41
- Returns:
42
- Image.Image: The preprocessed image.
43
- """
44
- processed_image = pipeline.preprocess_image(image)
45
- return processed_image
46
-
47
-
48
- def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
49
- """
50
- Preprocess a list of input images.
51
-
52
- Args:
53
- images (List[Tuple[Image.Image, str]]): The input images.
54
-
55
- Returns:
56
- List[Image.Image]: The preprocessed images.
57
- """
58
- images = [image[0] for image in images]
59
- processed_images = [pipeline.preprocess_image(image) for image in images]
60
- return processed_images
61
-
62
-
63
- def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
64
- return {
65
- 'gaussian': {
66
- **gs.init_params,
67
- '_xyz': gs._xyz.cpu().numpy(),
68
- '_features_dc': gs._features_dc.cpu().numpy(),
69
- '_scaling': gs._scaling.cpu().numpy(),
70
- '_rotation': gs._rotation.cpu().numpy(),
71
- '_opacity': gs._opacity.cpu().numpy(),
72
- },
73
- 'mesh': {
74
- 'vertices': mesh.vertices.cpu().numpy(),
75
- 'faces': mesh.faces.cpu().numpy(),
76
- },
77
- }
78
-
79
-
80
- def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
81
- gs = Gaussian(
82
- aabb=state['gaussian']['aabb'],
83
- sh_degree=state['gaussian']['sh_degree'],
84
- mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
85
- scaling_bias=state['gaussian']['scaling_bias'],
86
- opacity_bias=state['gaussian']['opacity_bias'],
87
- scaling_activation=state['gaussian']['scaling_activation'],
88
- )
89
- gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
90
- gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
91
- gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
92
- gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
93
- gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
94
-
95
- mesh = edict(
96
- vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
97
- faces=torch.tensor(state['mesh']['faces'], device='cuda'),
98
- )
99
-
100
- return gs, mesh
101
-
102
-
103
- def get_seed(randomize_seed: bool, seed: int) -> int:
104
- """
105
- Get the random seed.
106
- """
107
- return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
-
109
-
110
- @spaces.GPU
111
- def image_to_3d(
112
- image: Image.Image,
113
- multiimages: List[Tuple[Image.Image, str]],
114
- is_multiimage: bool,
115
- seed: int,
116
- ss_guidance_strength: float,
117
- ss_sampling_steps: int,
118
- slat_guidance_strength: float,
119
- slat_sampling_steps: int,
120
- multiimage_algo: Literal["multidiffusion", "stochastic"],
121
- req: gr.Request,
122
- ) -> Tuple[dict, str]:
123
- """
124
- Convert an image to a 3D model.
125
-
126
- Args:
127
- image (Image.Image): The input image.
128
- multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
129
- is_multiimage (bool): Whether is in multi-image mode.
130
- seed (int): The random seed.
131
- ss_guidance_strength (float): The guidance strength for sparse structure generation.
132
- ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
133
- slat_guidance_strength (float): The guidance strength for structured latent generation.
134
- slat_sampling_steps (int): The number of sampling steps for structured latent generation.
135
- multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
136
-
137
- Returns:
138
- dict: The information of the generated 3D model.
139
- str: The path to the video of the 3D model.
140
- """
141
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
142
- if not is_multiimage:
143
- outputs = pipeline.run(
144
- image,
145
- seed=seed,
146
- formats=["gaussian", "mesh"],
147
- preprocess_image=False,
148
- sparse_structure_sampler_params={
149
- "steps": ss_sampling_steps,
150
- "cfg_strength": ss_guidance_strength,
151
- },
152
- slat_sampler_params={
153
- "steps": slat_sampling_steps,
154
- "cfg_strength": slat_guidance_strength,
155
- },
156
- )
157
- else:
158
- outputs = pipeline.run_multi_image(
159
- [image[0] for image in multiimages],
160
- seed=seed,
161
- formats=["gaussian", "mesh"],
162
- preprocess_image=False,
163
- sparse_structure_sampler_params={
164
- "steps": ss_sampling_steps,
165
- "cfg_strength": ss_guidance_strength,
166
- },
167
- slat_sampler_params={
168
- "steps": slat_sampling_steps,
169
- "cfg_strength": slat_guidance_strength,
170
- },
171
- mode=multiimage_algo,
172
- )
173
- video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
174
- video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
175
- video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
176
- video_path = os.path.join(user_dir, 'sample.mp4')
177
- imageio.mimsave(video_path, video, fps=15)
178
- state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
179
- torch.cuda.empty_cache()
180
- return state, video_path
181
-
182
-
183
- @spaces.GPU(duration=90)
184
- def extract_glb(
185
- state: dict,
186
- mesh_simplify: float,
187
- texture_size: int,
188
- req: gr.Request,
189
- ) -> Tuple[str, str]:
190
- """
191
- Extract a GLB file from the 3D model.
192
-
193
- Args:
194
- state (dict): The state of the generated 3D model.
195
- mesh_simplify (float): The mesh simplification factor.
196
- texture_size (int): The texture resolution.
197
-
198
- Returns:
199
- str: The path to the extracted GLB file.
200
- """
201
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
202
- gs, mesh = unpack_state(state)
203
- glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
204
- glb_path = os.path.join(user_dir, 'sample.glb')
205
- glb.export(glb_path)
206
- torch.cuda.empty_cache()
207
- return glb_path, glb_path
208
-
209
-
210
- @spaces.GPU
211
- def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
212
- """
213
- Extract a Gaussian file from the 3D model.
214
-
215
- Args:
216
- state (dict): The state of the generated 3D model.
217
-
218
- Returns:
219
- str: The path to the extracted Gaussian file.
220
- """
221
- user_dir = os.path.join(TMP_DIR, str(req.session_hash))
222
- gs, _ = unpack_state(state)
223
- gaussian_path = os.path.join(user_dir, 'sample.ply')
224
- gs.save_ply(gaussian_path)
225
- torch.cuda.empty_cache()
226
- return gaussian_path, gaussian_path
227
-
228
-
229
- def prepare_multi_example() -> List[Image.Image]:
230
- multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
231
- images = []
232
- for case in multi_case:
233
- _images = []
234
- for i in range(1, 4):
235
- img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
236
- W, H = img.size
237
- img = img.resize((int(W / H * 512), 512))
238
- _images.append(np.array(img))
239
- images.append(Image.fromarray(np.concatenate(_images, axis=1)))
240
- return images
241
-
242
-
243
- def split_image(image: Image.Image) -> List[Image.Image]:
244
- """
245
- Split an image into multiple views.
246
- """
247
- image = np.array(image)
248
- alpha = image[..., 3]
249
- alpha = np.any(alpha>0, axis=0)
250
- start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
251
- end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
252
- images = []
253
- for s, e in zip(start_pos, end_pos):
254
- images.append(Image.fromarray(image[:, s:e+1]))
255
- return [preprocess_image(image) for image in images]
256
-
257
-
258
- with gr.Blocks(delete_cache=(600, 600)) as demo:
259
- gr.Markdown("""
260
- ## 图片生成3D模型
261
- * 上传一张或多张图片,点击“生成模型”。如果有alpha通道会识别成背景剔除遮罩(没有会用默认算法剔除)。
262
- * 如果对生成结果满意, 可以生成并下载GLB模型。
263
- """)
264
-
265
- with gr.Row():
266
- with gr.Column():
267
- with gr.Tabs() as input_tabs:
268
- with gr.Tab(label="单张图片", id=0) as single_image_input_tab:
269
- image_prompt = gr.Image(label="图片输入", format="png", image_mode="RGBA", type="pil", height=300)
270
- with gr.Tab(label="多张图片", id=1) as multiimage_input_tab:
271
- multiimage_prompt = gr.Gallery(label="图片输入", format="png", type="pil", height=300, columns=3)
272
- gr.Markdown("""
273
- 输入多张多角度图片。
274
- """)
275
-
276
- with gr.Accordion(label="生成设置", open=False):
277
- seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
278
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
279
- gr.Markdown("Stage 1: Sparse Structure Generation")
280
- with gr.Row():
281
- ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
282
- ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
283
- gr.Markdown("Stage 2: Structured Latent Generation")
284
- with gr.Row():
285
- slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
286
- slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
287
- multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
288
-
289
- generate_btn = gr.Button("生成模型")
290
-
291
- with gr.Accordion(label="GLB生成设置", open=False):
292
- mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
293
- texture_size = gr.Slider(512, 4096, label="Texture Size", value=1024, step=512)
294
-
295
- with gr.Row():
296
- extract_glb_btn = gr.Button("生成 GLB", interactive=False)
297
- extract_gs_btn = gr.Button("生成 PLY", interactive=False)
298
- gr.Markdown("""
299
- *提示:建议生成GLB文件,PLY文件会比较大(50MB左右)*
300
- """)
301
-
302
- with gr.Column():
303
- video_output = gr.Video(label="3D视频预览", autoplay=True, loop=True, height=300)
304
- model_output = LitModel3D(label="3D模型预览", exposure=10.0, height=300)
305
-
306
- with gr.Row():
307
- download_glb = gr.DownloadButton(label="下载 GLB", interactive=False)
308
- download_gs = gr.DownloadButton(label="下载 PLY", interactive=False)
309
-
310
- is_multiimage = gr.State(False)
311
- output_buf = gr.State()
312
-
313
- # Example images at the bottom of the page
314
- with gr.Row() as single_image_example:
315
- examples = gr.Examples(
316
- examples=[
317
- f'assets/example_image/{image}'
318
- for image in os.listdir("assets/example_image")
319
- ],
320
- inputs=[image_prompt],
321
- fn=preprocess_image,
322
- outputs=[image_prompt],
323
- run_on_click=True,
324
- examples_per_page=64,
325
- )
326
- with gr.Row(visible=False) as multiimage_example:
327
- examples_multi = gr.Examples(
328
- examples=prepare_multi_example(),
329
- inputs=[image_prompt],
330
- fn=split_image,
331
- outputs=[multiimage_prompt],
332
- run_on_click=True,
333
- examples_per_page=8,
334
- )
335
-
336
- # Handlers
337
- demo.load(start_session)
338
- demo.unload(end_session)
339
-
340
- single_image_input_tab.select(
341
- lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
342
- outputs=[is_multiimage, single_image_example, multiimage_example]
343
- )
344
- multiimage_input_tab.select(
345
- lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
346
- outputs=[is_multiimage, single_image_example, multiimage_example]
347
- )
348
-
349
- image_prompt.upload(
350
- preprocess_image,
351
- inputs=[image_prompt],
352
- outputs=[image_prompt],
353
- )
354
- multiimage_prompt.upload(
355
- preprocess_images,
356
- inputs=[multiimage_prompt],
357
- outputs=[multiimage_prompt],
358
- )
359
-
360
- generate_btn.click(
361
- get_seed,
362
- inputs=[randomize_seed, seed],
363
- outputs=[seed],
364
- ).then(
365
- image_to_3d,
366
- inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
367
- outputs=[output_buf, video_output],
368
- ).then(
369
- lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
370
- outputs=[extract_glb_btn, extract_gs_btn],
371
- )
372
-
373
- video_output.clear(
374
- lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
375
- outputs=[extract_glb_btn, extract_gs_btn],
376
- )
377
-
378
- extract_glb_btn.click(
379
- extract_glb,
380
- inputs=[output_buf, mesh_simplify, texture_size],
381
- outputs=[model_output, download_glb],
382
- ).then(
383
- lambda: gr.Button(interactive=True),
384
- outputs=[download_glb],
385
- )
386
-
387
- extract_gs_btn.click(
388
- extract_gaussian,
389
- inputs=[output_buf],
390
- outputs=[model_output, download_gs],
391
- ).then(
392
- lambda: gr.Button(interactive=True),
393
- outputs=[download_gs],
394
- )
395
-
396
- model_output.clear(
397
- lambda: gr.Button(interactive=False),
398
- outputs=[download_glb],
399
- )
400
-
401
-
402
- # Launch the Gradio app
403
- if __name__ == "__main__":
404
- pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
405
- pipeline.cuda()
406
- try:
407
- pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
408
- except:
409
- pass
410
- demo.launch()
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+
5
+ import os
6
+ import shutil
7
+ os.environ['SPCONV_ALGO'] = 'native'
8
+ from typing import *
9
+ import torch
10
+ import numpy as np
11
+ import imageio
12
+ from easydict import EasyDict as edict
13
+ from PIL import Image
14
+ from trellis.pipelines import TrellisImageTo3DPipeline
15
+ from trellis.representations import Gaussian, MeshExtractResult
16
+ from trellis.utils import render_utils, postprocessing_utils
17
+
18
+
19
+ MAX_SEED = np.iinfo(np.int32).max
20
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
21
+ os.makedirs(TMP_DIR, exist_ok=True)
22
+
23
+
24
+ def start_session(req: gr.Request):
25
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
26
+ os.makedirs(user_dir, exist_ok=True)
27
+
28
+
29
+ def end_session(req: gr.Request):
30
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
31
+ shutil.rmtree(user_dir)
32
+
33
+
34
+ def preprocess_image(image: Image.Image) -> Image.Image:
35
+ """
36
+ Preprocess the input image.
37
+
38
+ Args:
39
+ image (Image.Image): The input image.
40
+
41
+ Returns:
42
+ Image.Image: The preprocessed image.
43
+ """
44
+ processed_image = pipeline.preprocess_image(image)
45
+ return processed_image
46
+
47
+
48
+ def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
49
+ """
50
+ Preprocess a list of input images.
51
+
52
+ Args:
53
+ images (List[Tuple[Image.Image, str]]): The input images.
54
+
55
+ Returns:
56
+ List[Image.Image]: The preprocessed images.
57
+ """
58
+ images = [image[0] for image in images]
59
+ processed_images = [pipeline.preprocess_image(image) for image in images]
60
+ return processed_images
61
+
62
+
63
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
64
+ return {
65
+ 'gaussian': {
66
+ **gs.init_params,
67
+ '_xyz': gs._xyz.cpu().numpy(),
68
+ '_features_dc': gs._features_dc.cpu().numpy(),
69
+ '_scaling': gs._scaling.cpu().numpy(),
70
+ '_rotation': gs._rotation.cpu().numpy(),
71
+ '_opacity': gs._opacity.cpu().numpy(),
72
+ },
73
+ 'mesh': {
74
+ 'vertices': mesh.vertices.cpu().numpy(),
75
+ 'faces': mesh.faces.cpu().numpy(),
76
+ },
77
+ }
78
+
79
+
80
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
81
+ gs = Gaussian(
82
+ aabb=state['gaussian']['aabb'],
83
+ sh_degree=state['gaussian']['sh_degree'],
84
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
85
+ scaling_bias=state['gaussian']['scaling_bias'],
86
+ opacity_bias=state['gaussian']['opacity_bias'],
87
+ scaling_activation=state['gaussian']['scaling_activation'],
88
+ )
89
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
90
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
91
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
92
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
93
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
94
+
95
+ mesh = edict(
96
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
97
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
98
+ )
99
+
100
+ return gs, mesh
101
+
102
+
103
+ def get_seed(randomize_seed: bool, seed: int) -> int:
104
+ """
105
+ Get the random seed.
106
+ """
107
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
+
109
+
110
+ @spaces.GPU
111
+ def image_to_3d(
112
+ image: Image.Image,
113
+ multiimages: List[Tuple[Image.Image, str]],
114
+ is_multiimage: bool,
115
+ seed: int,
116
+ ss_guidance_strength: float,
117
+ ss_sampling_steps: int,
118
+ slat_guidance_strength: float,
119
+ slat_sampling_steps: int,
120
+ multiimage_algo: Literal["multidiffusion", "stochastic"],
121
+ req: gr.Request,
122
+ ) -> Tuple[dict, str]:
123
+ """
124
+ Convert an image to a 3D model.
125
+
126
+ Args:
127
+ image (Image.Image): The input image.
128
+ multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
129
+ is_multiimage (bool): Whether is in multi-image mode.
130
+ seed (int): The random seed.
131
+ ss_guidance_strength (float): The guidance strength for sparse structure generation.
132
+ ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
133
+ slat_guidance_strength (float): The guidance strength for structured latent generation.
134
+ slat_sampling_steps (int): The number of sampling steps for structured latent generation.
135
+ multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
136
+
137
+ Returns:
138
+ dict: The information of the generated 3D model.
139
+ str: The path to the video of the 3D model.
140
+ """
141
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
142
+ if not is_multiimage:
143
+ outputs = pipeline.run(
144
+ image,
145
+ seed=seed,
146
+ formats=["gaussian", "mesh"],
147
+ preprocess_image=False,
148
+ sparse_structure_sampler_params={
149
+ "steps": ss_sampling_steps,
150
+ "cfg_strength": ss_guidance_strength,
151
+ },
152
+ slat_sampler_params={
153
+ "steps": slat_sampling_steps,
154
+ "cfg_strength": slat_guidance_strength,
155
+ },
156
+ )
157
+ else:
158
+ outputs = pipeline.run_multi_image(
159
+ [image[0] for image in multiimages],
160
+ seed=seed,
161
+ formats=["gaussian", "mesh"],
162
+ preprocess_image=False,
163
+ sparse_structure_sampler_params={
164
+ "steps": ss_sampling_steps,
165
+ "cfg_strength": ss_guidance_strength,
166
+ },
167
+ slat_sampler_params={
168
+ "steps": slat_sampling_steps,
169
+ "cfg_strength": slat_guidance_strength,
170
+ },
171
+ mode=multiimage_algo,
172
+ )
173
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
174
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
175
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
176
+ video_path = os.path.join(user_dir, 'sample.mp4')
177
+ imageio.mimsave(video_path, video, fps=15)
178
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
179
+ torch.cuda.empty_cache()
180
+ return state, video_path
181
+
182
+
183
+ @spaces.GPU(duration=90)
184
+ def extract_glb(
185
+ state: dict,
186
+ mesh_simplify: float,
187
+ texture_size: int,
188
+ req: gr.Request,
189
+ ) -> Tuple[str, str]:
190
+ """
191
+ Extract a GLB file from the 3D model.
192
+
193
+ Args:
194
+ state (dict): The state of the generated 3D model.
195
+ mesh_simplify (float): The mesh simplification factor.
196
+ texture_size (int): The texture resolution.
197
+
198
+ Returns:
199
+ str: The path to the extracted GLB file.
200
+ """
201
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
202
+ gs, mesh = unpack_state(state)
203
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
204
+ glb_path = os.path.join(user_dir, 'sample.glb')
205
+ glb.export(glb_path)
206
+ torch.cuda.empty_cache()
207
+ return glb_path, glb_path
208
+
209
+
210
+ @spaces.GPU
211
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
212
+ """
213
+ Extract a Gaussian file from the 3D model.
214
+
215
+ Args:
216
+ state (dict): The state of the generated 3D model.
217
+
218
+ Returns:
219
+ str: The path to the extracted Gaussian file.
220
+ """
221
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
222
+ gs, _ = unpack_state(state)
223
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
224
+ gs.save_ply(gaussian_path)
225
+ torch.cuda.empty_cache()
226
+ return gaussian_path, gaussian_path
227
+
228
+
229
+ def prepare_multi_example() -> List[Image.Image]:
230
+ multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
231
+ images = []
232
+ for case in multi_case:
233
+ _images = []
234
+ for i in range(1, 4):
235
+ img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
236
+ W, H = img.size
237
+ img = img.resize((int(W / H * 512), 512))
238
+ _images.append(np.array(img))
239
+ images.append(Image.fromarray(np.concatenate(_images, axis=1)))
240
+ return images
241
+
242
+
243
+ def split_image(image: Image.Image) -> List[Image.Image]:
244
+ """
245
+ Split an image into multiple views.
246
+ """
247
+ image = np.array(image)
248
+ alpha = image[..., 3]
249
+ alpha = np.any(alpha>0, axis=0)
250
+ start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
251
+ end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
252
+ images = []
253
+ for s, e in zip(start_pos, end_pos):
254
+ images.append(Image.fromarray(image[:, s:e+1]))
255
+ return [preprocess_image(image) for image in images]
256
+
257
+
258
+ with gr.Blocks(delete_cache=(600, 600)) as demo:
259
+ gr.Markdown("""
260
+ ## 图片生成3D模型
261
+ * 上传一张或多张图片,点击“生成模型”。如果有alpha通道会识别成背景剔除遮罩(没有会用默认算法剔除)。
262
+ * 如果对生成结果满意, 可以生成并下载GLB模型。
263
+ """)
264
+
265
+ with gr.Row():
266
+ with gr.Column():
267
+ with gr.Tabs() as input_tabs:
268
+ with gr.Tab(label="单张图片", id=0) as single_image_input_tab:
269
+ image_prompt = gr.Image(label="图片输入", format="png", image_mode="RGBA", type="pil", height=300)
270
+ with gr.Tab(label="多张图片", id=1) as multiimage_input_tab:
271
+ multiimage_prompt = gr.Gallery(label="图片输入", format="png", type="pil", height=300, columns=3)
272
+ gr.Markdown("""
273
+ 输入多张多角度图片。
274
+ """)
275
+
276
+ with gr.Accordion(label="生成设置", open=False):
277
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
278
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
279
+ gr.Markdown("Stage 1: Sparse Structure Generation")
280
+ with gr.Row():
281
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
282
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
283
+ gr.Markdown("Stage 2: Structured Latent Generation")
284
+ with gr.Row():
285
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
286
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
287
+ multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
288
+
289
+ generate_btn = gr.Button("生成模型")
290
+
291
+ with gr.Accordion(label="GLB生成设置", open=False):
292
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
293
+ texture_size = gr.Slider(512, 4096, label="Texture Size", value=2048, step=512)
294
+
295
+ with gr.Row():
296
+ extract_glb_btn = gr.Button("生成 GLB", interactive=False)
297
+ extract_gs_btn = gr.Button("生成 PLY", interactive=False)
298
+ gr.Markdown("""
299
+ *提示:建议生成GLB文件,PLY文件会比较大(50MB左右)*
300
+ """)
301
+
302
+ with gr.Column():
303
+ video_output = gr.Video(label="3D视频预览", autoplay=True, loop=True, height=300)
304
+ model_output = LitModel3D(label="3D模型预览", exposure=10.0, height=300)
305
+
306
+ with gr.Row():
307
+ download_glb = gr.DownloadButton(label="下载 GLB", interactive=False)
308
+ download_gs = gr.DownloadButton(label="下载 PLY", interactive=False)
309
+
310
+ is_multiimage = gr.State(False)
311
+ output_buf = gr.State()
312
+
313
+ # Example images at the bottom of the page
314
+ with gr.Row() as single_image_example:
315
+ examples = gr.Examples(
316
+ examples=[
317
+ f'assets/example_image/{image}'
318
+ for image in os.listdir("assets/example_image")
319
+ ],
320
+ inputs=[image_prompt],
321
+ fn=preprocess_image,
322
+ outputs=[image_prompt],
323
+ run_on_click=True,
324
+ examples_per_page=64,
325
+ )
326
+ with gr.Row(visible=False) as multiimage_example:
327
+ examples_multi = gr.Examples(
328
+ examples=prepare_multi_example(),
329
+ inputs=[image_prompt],
330
+ fn=split_image,
331
+ outputs=[multiimage_prompt],
332
+ run_on_click=True,
333
+ examples_per_page=8,
334
+ )
335
+
336
+ # Handlers
337
+ demo.load(start_session)
338
+ demo.unload(end_session)
339
+
340
+ single_image_input_tab.select(
341
+ lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
342
+ outputs=[is_multiimage, single_image_example, multiimage_example]
343
+ )
344
+ multiimage_input_tab.select(
345
+ lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
346
+ outputs=[is_multiimage, single_image_example, multiimage_example]
347
+ )
348
+
349
+ image_prompt.upload(
350
+ preprocess_image,
351
+ inputs=[image_prompt],
352
+ outputs=[image_prompt],
353
+ )
354
+ multiimage_prompt.upload(
355
+ preprocess_images,
356
+ inputs=[multiimage_prompt],
357
+ outputs=[multiimage_prompt],
358
+ )
359
+
360
+ generate_btn.click(
361
+ get_seed,
362
+ inputs=[randomize_seed, seed],
363
+ outputs=[seed],
364
+ ).then(
365
+ image_to_3d,
366
+ inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
367
+ outputs=[output_buf, video_output],
368
+ ).then(
369
+ lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
370
+ outputs=[extract_glb_btn, extract_gs_btn],
371
+ )
372
+
373
+ video_output.clear(
374
+ lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
375
+ outputs=[extract_glb_btn, extract_gs_btn],
376
+ )
377
+
378
+ extract_glb_btn.click(
379
+ extract_glb,
380
+ inputs=[output_buf, mesh_simplify, texture_size],
381
+ outputs=[model_output, download_glb],
382
+ ).then(
383
+ lambda: gr.Button(interactive=True),
384
+ outputs=[download_glb],
385
+ )
386
+
387
+ extract_gs_btn.click(
388
+ extract_gaussian,
389
+ inputs=[output_buf],
390
+ outputs=[model_output, download_gs],
391
+ ).then(
392
+ lambda: gr.Button(interactive=True),
393
+ outputs=[download_gs],
394
+ )
395
+
396
+ model_output.clear(
397
+ lambda: gr.Button(interactive=False),
398
+ outputs=[download_glb],
399
+ )
400
+
401
+
402
+ # Launch the Gradio app
403
+ if __name__ == "__main__":
404
+ pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
405
+ pipeline.cuda()
406
+ try:
407
+ pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
408
+ except:
409
+ pass
410
+ demo.launch()