Spaces:
Running
Running
Merge branch 'main' into milestone-3
Browse files- milestone_2.py +26 -0
milestone_2.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import (AutoTokenizer, TFAutoModelForSequenceClassification,
|
3 |
+
pipeline)
|
4 |
+
|
5 |
+
st.title("CS-GY-6613 Project Milestone 2")
|
6 |
+
model_choices = (
|
7 |
+
"distilbert-base-uncased-finetuned-sst-2-english",
|
8 |
+
"j-hartmann/emotion-english-distilroberta-base",
|
9 |
+
"joeddav/distilbert-base-uncased-go-emotions-student",
|
10 |
+
)
|
11 |
+
|
12 |
+
with st.form("Input Form"):
|
13 |
+
text = st.text_area("Write your text here:", "CS-GY-6613 is a great course!")
|
14 |
+
model_name = st.selectbox("Select a model:", model_choices)
|
15 |
+
submitted = st.form_submit_button("Submit")
|
16 |
+
|
17 |
+
if submitted:
|
18 |
+
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
+
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
|
21 |
+
res = classifier(text)
|
22 |
+
label = res[0]["label"].upper()
|
23 |
+
score = res[0]["score"]
|
24 |
+
st.markdown(
|
25 |
+
f"This text was classified as **{label}** with a confidence score of **{score}**."
|
26 |
+
)
|