Spaces:
Runtime error
Runtime error
Commit
·
88adfd9
1
Parent(s):
fac3c6f
Update space
Browse files
app.py
CHANGED
@@ -5,131 +5,32 @@ import random
|
|
5 |
import torch
|
6 |
from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
|
7 |
import p2p, generation, inversion
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
scheduler=DDIMScheduler.from_pretrained(model_id,
|
17 |
-
subfolder="scheduler"),
|
18 |
-
).to(device=device, dtype=dtype)
|
19 |
-
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device)
|
20 |
-
pipe_reverse.unet = unet
|
21 |
-
pipe_reverse.load_lora_weights("dbaranchuk/icd-lora-sd15",
|
22 |
-
weight_name='reverse-259-519-779-999.safetensors')
|
23 |
-
pipe_reverse.fuse_lora()
|
24 |
-
pipe_reverse.to(device)
|
25 |
-
# -----------------------------
|
26 |
-
|
27 |
-
# Forward
|
28 |
-
# -----------------------------
|
29 |
-
pipe_forward = StableDiffusionPipeline.from_pretrained(model_id,
|
30 |
-
scheduler=DDIMScheduler.from_pretrained(model_id,
|
31 |
-
subfolder="scheduler"),
|
32 |
-
).to(device=device, dtype=dtype)
|
33 |
-
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device)
|
34 |
-
pipe_forward.unet = unet
|
35 |
-
pipe_forward.load_lora_weights("dbaranchuk/icd-lora-sd15",
|
36 |
-
weight_name='forward-19-259-519-779.safetensors')
|
37 |
-
pipe_forward.fuse_lora()
|
38 |
-
pipe_forward.to(device)
|
39 |
-
# -----------------------------
|
40 |
|
41 |
MAX_SEED = np.iinfo(np.int32).max
|
42 |
MAX_IMAGE_SIZE = 1024
|
43 |
|
44 |
@spaces.GPU(duration=30)
|
45 |
-
def infer(
|
46 |
-
crs, srs, amplify_factor, amplify_word,
|
47 |
-
blend_orig, blend_edited, is_replacement):
|
48 |
-
|
49 |
-
tokenizer = pipe_forward.tokenizer
|
50 |
-
noise_scheduler = DDPMScheduler.from_pretrained(
|
51 |
-
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", )
|
52 |
-
|
53 |
-
NUM_REVERSE_CONS_STEPS = 4
|
54 |
-
REVERSE_TIMESTEPS = [259, 519, 779, 999]
|
55 |
-
NUM_FORWARD_CONS_STEPS = 4
|
56 |
-
FORWARD_TIMESTEPS = [19, 259, 519, 779]
|
57 |
-
NUM_DDIM_STEPS = 50
|
58 |
-
|
59 |
-
solver = generation.Generator(
|
60 |
-
model=pipe_forward,
|
61 |
-
noise_scheduler=noise_scheduler,
|
62 |
-
n_steps=NUM_DDIM_STEPS,
|
63 |
-
forward_cons_model=pipe_forward,
|
64 |
-
forward_timesteps=FORWARD_TIMESTEPS,
|
65 |
-
reverse_cons_model=pipe_reverse,
|
66 |
-
reverse_timesteps=REVERSE_TIMESTEPS,
|
67 |
-
num_endpoints=NUM_REVERSE_CONS_STEPS,
|
68 |
-
num_forward_endpoints=NUM_FORWARD_CONS_STEPS,
|
69 |
-
max_forward_timestep_index=49,
|
70 |
-
start_timestep=19)
|
71 |
-
|
72 |
-
p2p.NUM_DDIM_STEPS = NUM_DDIM_STEPS
|
73 |
-
p2p.tokenizer = tokenizer
|
74 |
-
p2p.device = 'cuda'
|
75 |
-
|
76 |
-
prompt = [input_prompt]
|
77 |
-
|
78 |
-
(image_gt, image_rec), ddim_latent, uncond_embeddings = inversion.invert(
|
79 |
-
# Playing params
|
80 |
-
image_path=image_path,
|
81 |
-
prompt=prompt,
|
82 |
-
|
83 |
-
# Fixed params
|
84 |
-
is_cons_inversion=True,
|
85 |
-
w_embed_dim=512,
|
86 |
-
inv_guidance_scale=0.0,
|
87 |
-
stop_step=50,
|
88 |
-
solver=solver,
|
89 |
-
seed=10500)
|
90 |
-
|
91 |
-
p2p.NUM_DDIM_STEPS = 4
|
92 |
-
p2p.tokenizer = tokenizer
|
93 |
-
p2p.device = 'cuda'
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
# Playing params
|
100 |
-
cross_replace_steps = {'default_': crs, }
|
101 |
-
self_replace_steps = srs
|
102 |
-
blend_word = (((blend_orig,), (blend_edited,)))
|
103 |
-
eq_params = {"words": (amplify_word,), "values": (amplify_factor,)}
|
104 |
-
|
105 |
-
controller = p2p.make_controller(prompts,
|
106 |
-
is_replacement, # (is_replacement) True if only one word is changed
|
107 |
-
cross_replace_steps,
|
108 |
-
self_replace_steps,
|
109 |
-
blend_word,
|
110 |
-
eq_params)
|
111 |
-
|
112 |
-
tau = tau
|
113 |
-
image, _ = generation.runner(
|
114 |
-
# Playing params
|
115 |
-
guidance_scale=guidance-1,
|
116 |
-
tau1=tau, # Dynamic guidance if tau < 1.0
|
117 |
-
tau2=tau,
|
118 |
-
|
119 |
-
# Fixed params
|
120 |
-
model=pipe_reverse,
|
121 |
-
is_cons_forward=True,
|
122 |
-
w_embed_dim=512,
|
123 |
-
solver=solver,
|
124 |
-
prompt=prompts,
|
125 |
-
controller=controller,
|
126 |
-
num_inference_steps=50,
|
127 |
-
generator=None,
|
128 |
-
latent=ddim_latent,
|
129 |
-
uncond_embeddings=uncond_embeddings,
|
130 |
-
return_type='image')
|
131 |
-
|
132 |
-
image = generation.to_pil_images(image[1, :, :, :])
|
133 |
return image
|
134 |
|
135 |
css="""
|
@@ -176,14 +77,8 @@ with gr.Blocks(css=css) as demo:
|
|
176 |
)
|
177 |
with gr.Row():
|
178 |
|
179 |
-
|
180 |
-
label="
|
181 |
-
max_lines=1,
|
182 |
-
placeholder="Enter your prompt",
|
183 |
-
)
|
184 |
-
|
185 |
-
prompt = gr.Text(
|
186 |
-
label="Edited prompt",
|
187 |
max_lines=1,
|
188 |
placeholder="Enter your prompt",
|
189 |
)
|
@@ -192,7 +87,7 @@ with gr.Blocks(css=css) as demo:
|
|
192 |
with gr.Row():
|
193 |
|
194 |
with gr.Column():
|
195 |
-
|
196 |
with gr.Column():
|
197 |
result = gr.Image(label="Result", height=512, width=512, show_label=False)
|
198 |
|
@@ -201,68 +96,28 @@ with gr.Blocks(css=css) as demo:
|
|
201 |
with gr.Row():
|
202 |
|
203 |
guidance_scale = gr.Slider(
|
204 |
-
label="
|
205 |
minimum=1.0,
|
206 |
-
maximum=
|
207 |
step=1.0,
|
208 |
-
value=
|
209 |
)
|
210 |
|
211 |
-
|
212 |
-
label="
|
213 |
-
minimum=
|
214 |
-
maximum=
|
215 |
-
step=0
|
216 |
-
value=0
|
217 |
-
)
|
218 |
-
|
219 |
-
with gr.Row():
|
220 |
-
|
221 |
-
crs = gr.Slider(
|
222 |
-
label="Cross replace steps",
|
223 |
-
minimum=0.0,
|
224 |
-
maximum=1.0,
|
225 |
-
step=0.1,
|
226 |
-
value=0.4
|
227 |
-
)
|
228 |
-
|
229 |
-
srs = gr.Slider(
|
230 |
-
label="Self replace steps",
|
231 |
-
minimum=0.0,
|
232 |
-
maximum=1.0,
|
233 |
-
step=0.1,
|
234 |
-
value=0.4,
|
235 |
)
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
placeholder="Enter your word",
|
242 |
-
)
|
243 |
-
|
244 |
-
amplify_factor = gr.Slider(
|
245 |
-
label="Amplify factor",
|
246 |
-
minimum=0.0,
|
247 |
-
maximum=30,
|
248 |
step=1.0,
|
249 |
-
value=
|
250 |
)
|
251 |
-
with gr.Row():
|
252 |
-
|
253 |
-
blend_orig = gr.Text(
|
254 |
-
label="Blended word 1",
|
255 |
-
max_lines=1,
|
256 |
-
placeholder="Enter your word",)
|
257 |
-
|
258 |
-
blend_edited = gr.Text(
|
259 |
-
label="Blended word 2",
|
260 |
-
max_lines=1,
|
261 |
-
placeholder="Enter your word",)
|
262 |
-
|
263 |
-
with gr.Row():
|
264 |
-
|
265 |
-
is_replacement = gr.Checkbox(label="Is replacement?", value=False)
|
266 |
|
267 |
with gr.Row():
|
268 |
run_button = gr.Button("Edit", scale=0)
|
@@ -397,22 +252,20 @@ with gr.Blocks(css=css) as demo:
|
|
397 |
],
|
398 |
]
|
399 |
|
400 |
-
gr.Examples(
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
)
|
410 |
|
411 |
run_button.click(
|
412 |
fn = infer,
|
413 |
-
inputs=[
|
414 |
-
guidance_scale, tau, crs, srs, amplify_factor, amplify_word,
|
415 |
-
blend_orig, blend_edited, is_replacement],
|
416 |
outputs = [result]
|
417 |
)
|
418 |
|
|
|
5 |
import torch
|
6 |
from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
|
7 |
import p2p, generation, inversion
|
8 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, LCMScheduler
|
9 |
|
10 |
+
# InstructPix2Pix with LCM specified scheduler
|
11 |
+
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
12 |
+
"timbrooks/instruct-pix2pix", torch_dtype=torch.float16
|
13 |
+
)
|
14 |
+
pipe = pipe.to("cuda")
|
15 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
16 |
|
17 |
+
# Adapt the InstructPix2Pix model using the LoRA parameters
|
18 |
+
adapter_id = "latent-consistency/lcm-lora-sdv1-5"
|
19 |
+
pipe.load_lora_weights(adapter_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1024
|
23 |
|
24 |
@spaces.GPU(duration=30)
|
25 |
+
def infer(image, edit_instruction, guidance_scale, image_guidance_scale, n_steps):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
image = pipe(prompt=edit_instruction,
|
28 |
+
image=image,
|
29 |
+
num_inference_steps=n_steps,
|
30 |
+
guidance_scale=guidance_scale,
|
31 |
+
image_guidance_scale=image_guidance_scale,
|
32 |
+
).images[0]
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return image
|
35 |
|
36 |
css="""
|
|
|
77 |
)
|
78 |
with gr.Row():
|
79 |
|
80 |
+
edit_instruction = gr.Text(
|
81 |
+
label="Edit instruction",
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
max_lines=1,
|
83 |
placeholder="Enter your prompt",
|
84 |
)
|
|
|
87 |
with gr.Row():
|
88 |
|
89 |
with gr.Column():
|
90 |
+
image = gr.Image(label="Input image", height=512, width=512, show_label=False)
|
91 |
with gr.Column():
|
92 |
result = gr.Image(label="Result", height=512, width=512, show_label=False)
|
93 |
|
|
|
96 |
with gr.Row():
|
97 |
|
98 |
guidance_scale = gr.Slider(
|
99 |
+
label="guidance scale",
|
100 |
minimum=1.0,
|
101 |
+
maximum=8.0,
|
102 |
step=1.0,
|
103 |
+
value=2.0,
|
104 |
)
|
105 |
|
106 |
+
image_guidance_scale = gr.Slider(
|
107 |
+
label="image guidance scale",
|
108 |
+
minimum=1.0,
|
109 |
+
maximum=8.0,
|
110 |
+
step=1.0,
|
111 |
+
value=1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
+
n_steps = gr.Slider(
|
115 |
+
label="inference steps",
|
116 |
+
minimum=1.0,
|
117 |
+
maximum=10.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
step=1.0,
|
119 |
+
value=4.0,
|
120 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
with gr.Row():
|
123 |
run_button = gr.Button("Edit", scale=0)
|
|
|
252 |
],
|
253 |
]
|
254 |
|
255 |
+
#gr.Examples(
|
256 |
+
# examples = examples,
|
257 |
+
# inputs =[input_image, input_prompt, prompt,
|
258 |
+
# guidance_scale, tau, crs, srs, amplify_factor, amplify_word,
|
259 |
+
# blend_orig, blend_edited, is_replacement],
|
260 |
+
# outputs=[
|
261 |
+
# result
|
262 |
+
# ],
|
263 |
+
# fn=infer, cache_examples=True
|
264 |
+
#)
|
265 |
|
266 |
run_button.click(
|
267 |
fn = infer,
|
268 |
+
inputs=[image, edit_instruction, guidance_scale, image_guidance_scale, n_steps]
|
|
|
|
|
269 |
outputs = [result]
|
270 |
)
|
271 |
|