Spaces:
Runtime error
Runtime error
File size: 25,503 Bytes
2a35740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from tqdm import tqdm
from typing import Union
from IPython.display import display
import p2p
# Main function to run
# ----------------------------------------------------------------------
@torch.no_grad()
def runner(
model,
prompt,
controller,
solver,
is_cons_forward=False,
num_inference_steps=50,
guidance_scale=7.5,
generator=None,
latent=None,
uncond_embeddings=None,
start_time=50,
return_type='image',
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0,
):
p2p.register_attention_control(model, controller)
height = width = 512
solver.init_prompt(prompt, None)
latent, latents = init_latent(latent, model, 512, 512, generator, len(prompt))
model.scheduler.set_timesteps(num_inference_steps)
dynamic_guidance = True if tau1 < 1.0 or tau1 < 1.0 else False
if not is_cons_forward:
latents = solver.ddim_loop(latents,
num_inference_steps,
is_forward=False,
guidance_scale=guidance_scale,
dynamic_guidance=dynamic_guidance,
tau1=tau1,
tau2=tau2,
w_embed_dim=w_embed_dim,
uncond_embeddings=uncond_embeddings if uncond_embeddings is not None else None,
controller=controller)
latents = latents[-1]
else:
latents = solver.cons_generation(
latents,
guidance_scale=guidance_scale,
w_embed_dim=w_embed_dim,
dynamic_guidance=dynamic_guidance,
tau1=tau1,
tau2=tau2,
controller=controller)
latents = latents[-1]
if return_type == 'image':
image = latent2image(model.vae, latents.to(model.vae.dtype))
else:
image = latents
return image, latent
# ----------------------------------------------------------------------
# Utils
# ----------------------------------------------------------------------
def linear_schedule_old(t, guidance_scale, tau1, tau2):
t = t / 1000
if t <= tau1:
gamma = 1.0
elif t >= tau2:
gamma = 0.0
else:
gamma = (tau2 - t) / (tau2 - tau1)
return gamma * guidance_scale
def linear_schedule(t, guidance_scale, tau1=0.4, tau2=0.8):
t = t / 1000
if t <= tau1:
return guidance_scale
if t >= tau2:
return 1.0
gamma = (tau2 - t) / (tau2 - tau1) * (guidance_scale - 1.0) + 1.0
return gamma
def guidance_scale_embedding(w, embedding_dim=512, dtype=torch.float32):
"""
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
Args:
timesteps (`torch.Tensor`):
generate embedding vectors at these timesteps
embedding_dim (`int`, *optional*, defaults to 512):
dimension of the embeddings to generate
dtype:
data type of the generated embeddings
Returns:
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
"""
assert len(w.shape) == 1
w = w * 1000.0
half_dim = embedding_dim // 2
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
emb = w.to(dtype)[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0, 1))
assert emb.shape == (w.shape[0], embedding_dim)
return emb
# ----------------------------------------------------------------------
# Diffusion step with scheduler from diffusers and controller for editing
# ----------------------------------------------------------------------
def extract_into_tensor(a, t, x_shape):
b, *_ = t.shape
out = a.gather(-1, t)
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
def predicted_origin(model_output, timesteps, boundary_timesteps, sample, prediction_type, alphas, sigmas):
sigmas_s = extract_into_tensor(sigmas, boundary_timesteps, sample.shape)
alphas_s = extract_into_tensor(alphas, boundary_timesteps, sample.shape)
sigmas = extract_into_tensor(sigmas, timesteps, sample.shape)
alphas = extract_into_tensor(alphas, timesteps, sample.shape)
# Set hard boundaries to ensure equivalence with forward (direct) CD
alphas_s[boundary_timesteps == 0] = 1.0
sigmas_s[boundary_timesteps == 0] = 0.0
if prediction_type == "epsilon":
pred_x_0 = (sample - sigmas * model_output) / alphas # x0 prediction
pred_x_0 = alphas_s * pred_x_0 + sigmas_s * model_output # Euler step to the boundary step
elif prediction_type == "v_prediction":
assert boundary_timesteps == 0, "v_prediction does not support multiple endpoints at the moment"
pred_x_0 = alphas * sample - sigmas * model_output
else:
raise ValueError(f"Prediction type {prediction_type} currently not supported.")
return pred_x_0
def guided_step(noise_prediction_text,
noise_pred_uncond,
t,
guidance_scale,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6):
if dynamic_guidance:
if not isinstance(t, int):
t = t.item()
new_guidance_scale = linear_schedule(t, guidance_scale, tau1=tau1, tau2=tau2)
else:
new_guidance_scale = guidance_scale
noise_pred = noise_pred_uncond + new_guidance_scale * (noise_prediction_text - noise_pred_uncond)
return noise_pred
# ----------------------------------------------------------------------
# DDIM scheduler with inversion
# ----------------------------------------------------------------------
class Generator:
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray]):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[
prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
return prev_sample
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
sample: Union[torch.FloatTensor, np.ndarray]):
timestep, next_timestep = min(
timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(self, latents, t, context):
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
def get_noise_pred(self,
model,
latent,
t,
guidance_scale=1,
context=None,
w_embed_dim=0,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6):
latents_input = torch.cat([latent] * 2)
if context is None:
context = self.context
# w embed
# --------------------------------------
if w_embed_dim > 0:
if dynamic_guidance:
if not isinstance(t, int):
t_item = t.item()
guidance_scale = linear_schedule_old(t_item, guidance_scale, tau1=tau1, tau2=tau2) # TODO UPDATE
if len(latents_input) == 4:
guidance_scale_tensor = torch.tensor([0.0, 0.0, 0.0, guidance_scale])
else:
guidance_scale_tensor = torch.tensor([guidance_scale] * len(latents_input))
w_embedding = guidance_scale_embedding(guidance_scale_tensor, embedding_dim=w_embed_dim)
w_embedding = w_embedding.to(device=latent.device, dtype=latent.dtype)
else:
w_embedding = None
# --------------------------------------
noise_pred = model.unet(latents_input.to(dtype=model.unet.dtype),
t,
timestep_cond=w_embedding.to(dtype=model.unet.dtype) if w_embed_dim > 0 else None,
encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
if guidance_scale > 1 and w_embedding is None:
noise_pred = guided_step(noise_prediction_text, noise_pred_uncond, t, guidance_scale, dynamic_guidance,
tau1, tau2)
else:
noise_pred = noise_prediction_text
return noise_pred
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.model.vae.decode(latents.to(dtype=self.model.dtype))['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
return image
@torch.no_grad()
def image2latent(self, image):
with torch.no_grad():
if type(image) is Image:
image = np.array(image)
if type(image) is torch.Tensor and image.dim() == 4:
latents = image
elif type(image) is list:
image = [np.array(i).reshape(1, 512, 512, 3) for i in image]
image = np.concatenate(image)
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(0, 3, 1, 2).to(self.model.device, dtype=self.model.vae.dtype)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
else:
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(self.model.device, dtype=self.model.dtype)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def init_prompt(self, prompt, uncond_embeddings=None):
if uncond_embeddings is None:
uncond_input = self.model.tokenizer(
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
text_input = self.model.tokenizer(
prompt,
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
self.context = torch.cat([uncond_embeddings.expand(*text_embeddings.shape), text_embeddings])
self.prompt = prompt
@torch.no_grad()
def ddim_loop(self,
latent,
n_steps,
is_forward=True,
guidance_scale=1,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0,
uncond_embeddings=None,
controller=None):
all_latent = [latent]
latent = latent.clone().detach()
for i in tqdm(range(n_steps)):
if uncond_embeddings is not None:
self.init_prompt(self.prompt, uncond_embeddings[i])
if is_forward:
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
else:
t = self.model.scheduler.timesteps[i]
noise_pred = self.get_noise_pred(
model=self.model,
latent=latent,
t=t,
context=None,
guidance_scale=guidance_scale,
dynamic_guidance=dynamic_guidance,
w_embed_dim=w_embed_dim,
tau1=tau1,
tau2=tau2)
if is_forward:
latent = self.next_step(noise_pred, t, latent)
else:
latent = self.prev_step(noise_pred, t, latent)
if controller is not None:
latent = controller.step_callback(latent)
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
def ddim_inversion(self,
image,
n_steps=None,
guidance_scale=1,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0):
if n_steps is None:
n_steps = self.n_steps
latent = self.image2latent(image)
image_rec = self.latent2image(latent)
ddim_latents = self.ddim_loop(latent,
is_forward=True,
guidance_scale=guidance_scale,
n_steps=n_steps,
dynamic_guidance=dynamic_guidance,
tau1=tau1,
tau2=tau2,
w_embed_dim=w_embed_dim)
return image_rec, ddim_latents
@torch.no_grad()
def cons_generation(self,
latent,
guidance_scale=1,
dynamic_guidance=False,
tau1=0.4,
tau2=0.6,
w_embed_dim=0,
controller=None, ):
all_latent = [latent]
latent = latent.clone().detach()
alpha_schedule = torch.sqrt(self.model.scheduler.alphas_cumprod).to(self.model.device)
sigma_schedule = torch.sqrt(1 - self.model.scheduler.alphas_cumprod).to(self.model.device)
for i, (t, s) in enumerate(tqdm(zip(self.reverse_timesteps, self.reverse_boundary_timesteps))):
noise_pred = self.get_noise_pred(
model=self.reverse_cons_model,
latent=latent,
t=t.to(self.model.device),
context=None,
tau1=tau1, tau2=tau2,
w_embed_dim=w_embed_dim,
guidance_scale=guidance_scale,
dynamic_guidance=dynamic_guidance)
latent = predicted_origin(
noise_pred,
torch.tensor([t] * len(latent), device=self.model.device),
torch.tensor([s] * len(latent), device=self.model.device),
latent,
self.model.scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
if controller is not None:
latent = controller.step_callback(latent)
all_latent.append(latent)
return all_latent
@torch.no_grad()
def cons_inversion(self,
image,
guidance_scale=0.0,
w_embed_dim=0,
seed=0):
alpha_schedule = torch.sqrt(self.model.scheduler.alphas_cumprod).to(self.model.device)
sigma_schedule = torch.sqrt(1 - self.model.scheduler.alphas_cumprod).to(self.model.device)
# 5. Prepare latent variables
latent = self.image2latent(image)
generator = torch.Generator().manual_seed(seed)
noise = torch.randn(latent.shape, generator=generator).to(latent.device)
latent = self.noise_scheduler.add_noise(latent, noise, torch.tensor([self.start_timestep]))
image_rec = self.latent2image(latent)
for i, (t, s) in enumerate(tqdm(zip(self.forward_timesteps, self.forward_boundary_timesteps))):
# predict the noise residual
noise_pred = self.get_noise_pred(
model=self.forward_cons_model,
latent=latent,
t=t.to(self.model.device),
context=None,
guidance_scale=guidance_scale,
w_embed_dim=w_embed_dim,
dynamic_guidance=False)
latent = predicted_origin(
noise_pred,
torch.tensor([t] * len(latent), device=self.model.device),
torch.tensor([s] * len(latent), device=self.model.device),
latent,
self.model.scheduler.config.prediction_type,
alpha_schedule,
sigma_schedule,
)
return image_rec, [latent]
def _create_forward_inverse_timesteps(self,
num_endpoints,
n_steps,
max_inverse_timestep_index):
timestep_interval = n_steps // num_endpoints + int(n_steps % num_endpoints > 0)
endpoint_idxs = torch.arange(timestep_interval, n_steps, timestep_interval) - 1
inverse_endpoint_idxs = torch.arange(timestep_interval, n_steps, timestep_interval) - 1
inverse_endpoint_idxs = torch.tensor(inverse_endpoint_idxs.tolist() + [max_inverse_timestep_index])
endpoints = torch.tensor([0] + self.ddim_timesteps[endpoint_idxs].tolist())
inverse_endpoints = self.ddim_timesteps[inverse_endpoint_idxs]
return endpoints, inverse_endpoints
def __init__(self,
model,
n_steps,
noise_scheduler,
forward_cons_model=None,
reverse_cons_model=None,
num_endpoints=1,
num_forward_endpoints=1,
reverse_timesteps=None,
forward_timesteps=None,
max_forward_timestep_index=49,
start_timestep=19):
self.model = model
self.forward_cons_model = forward_cons_model
self.reverse_cons_model = reverse_cons_model
self.noise_scheduler = noise_scheduler
self.n_steps = n_steps
self.tokenizer = self.model.tokenizer
self.model.scheduler.set_timesteps(n_steps)
self.prompt = None
self.context = None
step_ratio = 1000 // n_steps
self.ddim_timesteps = (np.arange(1, n_steps + 1) * step_ratio).round().astype(np.int64) - 1
self.ddim_timesteps = torch.from_numpy(self.ddim_timesteps).long()
self.start_timestep = start_timestep
# Set endpoints for direct CTM
if reverse_timesteps is None or forward_timesteps is None:
endpoints, inverse_endpoints = self._create_forward_inverse_timesteps(num_endpoints, n_steps,
max_forward_timestep_index)
self.reverse_timesteps, self.reverse_boundary_timesteps = inverse_endpoints.flip(0), endpoints.flip(0)
# Set endpoints for forward CTM
endpoints, inverse_endpoints = self._create_forward_inverse_timesteps(num_forward_endpoints, n_steps,
max_forward_timestep_index)
self.forward_timesteps, self.forward_boundary_timesteps = endpoints, inverse_endpoints
self.forward_timesteps[0] = self.start_timestep
else:
self.reverse_timesteps, self.reverse_boundary_timesteps = reverse_timesteps, reverse_timesteps
self.reverse_timesteps.reverse()
self.reverse_boundary_timesteps = self.reverse_boundary_timesteps[1:] + [self.reverse_boundary_timesteps[0]]
self.reverse_boundary_timesteps[-1] = 0
self.reverse_timesteps, self.reverse_boundary_timesteps = torch.tensor(reverse_timesteps), torch.tensor(
self.reverse_boundary_timesteps)
self.forward_timesteps, self.forward_boundary_timesteps = forward_timesteps, forward_timesteps
self.forward_boundary_timesteps = self.forward_boundary_timesteps[1:] + [self.forward_boundary_timesteps[0]]
self.forward_boundary_timesteps[-1] = 999
self.forward_timesteps, self.forward_boundary_timesteps = torch.tensor(
self.forward_timesteps), torch.tensor(self.forward_boundary_timesteps)
print(f"Endpoints reverse CTM: {self.reverse_timesteps}, {self.reverse_boundary_timesteps}")
print(f"Endpoints forward CTM: {self.forward_timesteps}, {self.forward_boundary_timesteps}")
# ----------------------------------------------------------------------
# 3rd party utils
# ----------------------------------------------------------------------
def latent2image(vae, latents):
latents = 1 / 0.18215 * latents
image = vae.decode(latents)['sample']
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
image = (image * 255).astype(np.uint8)
return image
def init_latent(latent, model, height, width, generator, batch_size):
if latent is None:
latent = torch.randn(
(1, model.unet.in_channels, height // 8, width // 8),
generator=generator,
)
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
return latent, latents
def load_512(image_path, left=0, right=0, top=0, bottom=0):
# if type(image_path) is str:
# image = np.array(Image.open(image_path))[:, :, :3]
# else:
# image = image_path
# h, w, c = image.shape
# left = min(left, w - 1)
# right = min(right, w - left - 1)
# top = min(top, h - left - 1)
# bottom = min(bottom, h - top - 1)
# image = image[top:h - bottom, left:w - right]
# h, w, c = image.shape
# if h < w:
# offset = (w - h) // 2
# image = image[:, offset:offset + h]
# elif w < h:
# offset = (h - w) // 2
# image = image[offset:offset + w]
image = np.array(Image.open(image_path).convert('RGB'))[:, :, :3]
image = np.array(Image.fromarray(image).resize((512, 512)))
return image
def to_pil_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
return pil_img
def view_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
display(pil_img)
# ----------------------------------------------------------------------
|