Spaces:
Runtime error
Runtime error
File size: 15,922 Bytes
2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 8bb91d1 2a35740 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import spaces
import gradio as gr
import numpy as np
import random
import torch
from diffusers import DDPMScheduler, StableDiffusionPipeline, DDIMScheduler, UNet2DConditionModel
import p2p, generation, inversion
model_id = 'runwayml/stable-diffusion-v1-5'
dtype=torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Reverse
# -----------------------------
pipe_reverse = StableDiffusionPipeline.from_pretrained(model_id,
scheduler=DDIMScheduler.from_pretrained(model_id,
subfolder="scheduler"),
).to(device=device, dtype=dtype)
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device)
pipe_reverse.unet = unet
pipe_reverse.load_lora_weights("dbaranchuk/icd-lora-sd15",
weight_name='reverse-259-519-779-999.safetensors')
pipe_reverse.fuse_lora()
pipe_reverse.to(device)
# -----------------------------
# Forward
# -----------------------------
pipe_forward = StableDiffusionPipeline.from_pretrained(model_id,
scheduler=DDIMScheduler.from_pretrained(model_id,
subfolder="scheduler"),
).to(device=device, dtype=dtype)
unet = UNet2DConditionModel.from_pretrained("dbaranchuk/sd15-cfg-distill-unet").to(device)
pipe_forward.unet = unet
pipe_forward.load_lora_weights("dbaranchuk/icd-lora-sd15",
weight_name='forward-19-259-519-779.safetensors')
pipe_forward.fuse_lora()
pipe_forward.to(device)
# -----------------------------
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=30)
def infer(image_path, input_prompt, edited_prompt, guidance, tau,
crs, srs, amplify_factor, amplify_word,
blend_orig, blend_edited, is_replacement):
tokenizer = pipe_forward.tokenizer
noise_scheduler = DDPMScheduler.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="scheduler", )
NUM_REVERSE_CONS_STEPS = 4
REVERSE_TIMESTEPS = [259, 519, 779, 999]
NUM_FORWARD_CONS_STEPS = 4
FORWARD_TIMESTEPS = [19, 259, 519, 779]
NUM_DDIM_STEPS = 50
solver = generation.Generator(
model=pipe_forward,
noise_scheduler=noise_scheduler,
n_steps=NUM_DDIM_STEPS,
forward_cons_model=pipe_forward,
forward_timesteps=FORWARD_TIMESTEPS,
reverse_cons_model=pipe_reverse,
reverse_timesteps=REVERSE_TIMESTEPS,
num_endpoints=NUM_REVERSE_CONS_STEPS,
num_forward_endpoints=NUM_FORWARD_CONS_STEPS,
max_forward_timestep_index=49,
start_timestep=19)
p2p.NUM_DDIM_STEPS = NUM_DDIM_STEPS
p2p.tokenizer = tokenizer
p2p.device = 'cuda'
prompt = [input_prompt]
(image_gt, image_rec), ddim_latent, uncond_embeddings = inversion.invert(
# Playing params
image_path=image_path,
prompt=prompt,
# Fixed params
is_cons_inversion=True,
w_embed_dim=512,
inv_guidance_scale=0.0,
stop_step=50,
solver=solver,
seed=10500)
p2p.NUM_DDIM_STEPS = 4
p2p.tokenizer = tokenizer
p2p.device = 'cuda'
prompts = [input_prompt,
edited_prompt
]
# Playing params
cross_replace_steps = {'default_': crs, }
self_replace_steps = srs
blend_word = (((blend_orig,), (blend_edited,)))
eq_params = {"words": (amplify_word,), "values": (amplify_factor,)}
controller = p2p.make_controller(prompts,
is_replacement, # (is_replacement) True if only one word is changed
cross_replace_steps,
self_replace_steps,
blend_word,
eq_params)
tau = tau
image, _ = generation.runner(
# Playing params
guidance_scale=guidance-1,
tau1=tau, # Dynamic guidance if tau < 1.0
tau2=tau,
# Fixed params
model=pipe_reverse,
is_cons_forward=True,
w_embed_dim=512,
solver=solver,
prompt=prompts,
controller=controller,
num_inference_steps=50,
generator=None,
latent=ddim_latent,
uncond_embeddings=uncond_embeddings,
return_type='image')
image = generation.to_pil_images(image[1, :, :, :])
return image
css="""
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Invertible Consistency Distillation ⚡
# ⚡ Text-guided image editing with 8-step iCD-SD1.5 ⚡
This is a demo for [Invertible Consistency Distillation](https://yandex-research.github.io/invertible-cd/),
a diffusion distillation method proposed in [Invertible Consistency Distillation for Text-Guided Image Editing in Around 7 Steps](https://arxiv.org/abs/2406.14539)
by [Yandex Research](https://github.com/yandex-research).
Currently running on {power_device}
"""
)
gr.Markdown(
"**Please** check the examples to catch the intuition behind the hyperparameters, which are quite important for successful editing. A short description: <br />1. *Dynamic guidance tau*. Controls the interval where guidance is applied: if t < tau, then guidance is turned on for t < tau."
" Lower tau values provide better reference preservation. We commonly use tau=0.6 and tau=0.8. <br />"
"2. *Cross replace steps (crs)* and *self replace steps (srs)*. Controls the time step interval "
"where the cross- and self-attention maps are replaced. Higher values lead to better preservation of the reference image. "
"The optimal values depend on the particular image. "
"Mostly, we use crs and srs from 0.2 to 0.6. <br />"
"3. *Amplify word* and *Amplify factor*. Define the word that needs to be enhanced in the edited image. <br />"
"4. *Blended word*. Specifies the object used for making local edits. That is, edit only selected objects. <br />"
"5. *Is replacement*. You can set True, if you replace only one word in the original prompt. But False also works in these cases."
)
gr.Markdown(
"Feel free to check out our [image generation demo](https://huggingface.co/spaces/dbaranchuk/iCD-image-generation) as well."
)
gr.Markdown(
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [](https://github.com/yandex-research/invertible-cd)"
)
with gr.Row():
input_prompt = gr.Text(
label="Origial prompt",
max_lines=1,
placeholder="Enter your prompt",
)
prompt = gr.Text(
label="Edited prompt",
max_lines=1,
placeholder="Enter your prompt",
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input image", height=512, width=512, show_label=False)
with gr.Column():
result = gr.Image(label="Result", height=512, width=512, show_label=False)
with gr.Accordion("Advanced Settings", open=True):
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1.0,
maximum=20.0,
step=1.0,
value=20.0,
)
tau = gr.Slider(
label="Dynamic guidance tau",
minimum=0.0,
maximum=1.0,
step=0.2,
value=0.8,
)
with gr.Row():
crs = gr.Slider(
label="Cross replace steps",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.4
)
srs = gr.Slider(
label="Self replace steps",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.4,
)
with gr.Row():
amplify_word = gr.Text(
label="Amplify word",
max_lines=1,
placeholder="Enter your word",
)
amplify_factor = gr.Slider(
label="Amplify factor",
minimum=0.0,
maximum=30,
step=1.0,
value=1,
)
with gr.Row():
blend_orig = gr.Text(
label="Blended word 1",
max_lines=1,
placeholder="Enter your word",)
blend_edited = gr.Text(
label="Blended word 2",
max_lines=1,
placeholder="Enter your word",)
with gr.Row():
is_replacement = gr.Checkbox(label="Is replacement?", value=False)
with gr.Row():
run_button = gr.Button("Edit", scale=0)
with gr.Row():
examples = [
[
"examples/orig_3.jpg", #input_image
"a photo of a basket of apples", #src_prompt
"a photo of a basket of oranges", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.6, #srs
1, #amplify factor
'oranges', # amplify word
'', #orig blend
'oranges', #edited blend
False #replacement
],
[
"examples/orig_3.jpg", #input_image
"a photo of a basket of apples", #src_prompt
"a photo of a basket of puppies", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.1, #srs
2, #amplify factor
'puppies', # amplify word
'', #orig blend
'puppies', #edited blend
True #replacement
],
[
"examples/orig_3.jpg", #input_image
"a photo of a basket of apples", #src_prompt
"a photo of a basket of apples under snowfall", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.4, #srs
30, #amplify factor
'snowfall', # amplify word
'', #orig blend
'snowfall', #edited blend
False #replacement
],
[
"examples/orig_1.jpg", #input_image
"a photo of an owl", #src_prompt
"a photo of an yellow owl", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.9, #crs
0.9, #srs
20, #amplify factor
'yellow', # amplify word
'owl', #orig blend
'yellow', #edited blend
False #replacement
],
[
"examples/orig_1.jpg", #input_image
"a photo of an owl", #src_prompt
"an anime-style painting of an owl", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.6, #crs
0.3, #srs
10, #amplify factor
'anime-style', # amplify word
'painting', #orig blend
'anime-style', #edited blend
False #replacement
],
[
"examples/orig_1.jpg", #input_image
"a photo of an owl", #src_prompt
"a photo of an owl underwater with many fishes nearby", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.4, #crs
0.4, #srs
18, #amplify factor
'fishes', # amplify word
'', #orig blend
'fishes', #edited blend
False #replacement
],
[
"examples/orig_2.jpg", #input_image
"a photograph of a teddy bear sitting on a wall", #src_prompt
"a photograph of a teddy bear sitting on a wall surrounded by roses", #tgt_prompt
20, #guidance_scale
0.6, #tau
0.4, #crs
0.1, #srs
25, #amplify factor
'roses', # amplify word
'', #orig blend
'roses', #edited blend
False #replacement
],
[
"examples/orig_2.jpg", #input_image
"a photograph of a teddy bear sitting on a wall", #src_prompt
"a photograph of a wooden bear sitting on a wall", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.5, #crs
0.5, #srs
14, #amplify factor
'wooden', # amplify word
'', #orig blend
'wooden', #edited blend
True #replacement
],
[
"examples/orig_2.jpg", #input_image
"a photograph of a teddy bear sitting on a wall", #src_prompt
"a photograph of a teddy rabbit sitting on a wall", #tgt_prompt
20, #guidance_scale
0.8, #tau
0.4, #crs
0.4, #srs
3, #amplify factor
'rabbit', # amplify word
'', #orig blend
'rabbit', #edited blend
True #replacement
],
]
gr.Examples(
examples = examples,
inputs =[input_image, input_prompt, prompt,
guidance_scale, tau, crs, srs, amplify_factor, amplify_word,
blend_orig, blend_edited, is_replacement],
outputs=[
result
],
fn=infer, cache_examples=True
)
run_button.click(
fn = infer,
inputs=[input_image, input_prompt, prompt,
guidance_scale, tau, crs, srs, amplify_factor, amplify_word,
blend_orig, blend_edited, is_replacement],
outputs = [result]
)
demo.queue().launch()
|