import spaces import gradio as gr import numpy as np import random import functools import os import torch from diffusers import StableDiffusion3Pipeline from diffusers import DiffusionPipeline from inference import run from peft import LoraConfig, get_peft_model, PeftModel huggingface_token = os.getenv("HF_TOKEN") pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.float16, token=huggingface_token) pipe = pipe.to("cuda") distill_check = 'yresearch/swd-large-6-steps' pipe.transformer = PeftModel.from_pretrained( pipe.transformer, distill_check, ) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU() def infer(prompt, seed, randomize_seed): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022, 0.0000] scales = [32, 48, 64, 80, 96, 128] images = run( pipe, prompt, sigmas=torch.tensor(sigmas).to('cuda'), timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000, scales=scales, guidance_scale=0.0, height=int(scales[0] * 8), width=int(scales[0] * 8), generator=generator, ).images[0] return images examples = [ "3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background", 'Long-exposure night photography of a starry sky over a mountain range, with light trails.', "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A gold astronaut meditating in a lush green forest by a lake", "A group of friends sitting around a campfire." ] css = """ #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( f""" # ⚡ Scale-wise Distillation ⚡ # ⚡ Image Generation with 6-step SwD ⚡ This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/swd/), a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2503.16397) by [Yandex Research](https://github.com/yandex-research). Currently running on {power_device}. """ ) gr.Markdown( "If you enjoy the space, feel free to give a ⭐ to the Github Repo. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)" ) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=False) gr.Examples( examples=examples, inputs=[prompt], cache_examples=False ) run_button.click( fn=infer, inputs=[prompt, seed, randomize_seed], outputs=[result] ) demo.queue().launch(share=False)