dbaranchuk commited on
Commit
508c6aa
·
verified ·
1 Parent(s): 18ee153

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +66 -98
app.py CHANGED
@@ -1,72 +1,87 @@
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
-
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
 
 
 
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
 
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
  generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
 
 
 
 
 
48
  generator=generator,
49
- ).images[0]
50
 
51
- return image, seed
52
 
53
 
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
  "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
 
 
58
  ]
59
 
60
  css = """
61
  #col-container {
62
  margin: 0 auto;
63
- max-width: 640px;
64
  }
65
  """
66
 
 
 
 
 
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
@@ -77,18 +92,11 @@ with gr.Blocks(css=css) as demo:
77
  container=False,
78
  )
79
 
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
 
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
-
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
@@ -97,58 +105,18 @@ with gr.Blocks(css=css) as demo:
97
  value=0,
98
  )
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
-
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
-
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
-
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
-
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
-
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
  fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
  )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ import spaces
2
  import gradio as gr
3
  import numpy as np
4
  import random
5
+ import functools
 
 
6
  import torch
7
+ from diffusers import StableDiffusion3Pipeline
8
+ from inference import run
9
+ from peft import LoraConfig, get_peft_model, PeftModel
10
 
11
+ pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium",
12
+ torch_dtype=torch.float16)
13
+ pipe = pipe.to("cuda")
 
 
 
 
14
 
15
+ distill_check = 'yresearch/swd-medium-6-steps'
16
+ pipe.transformer = PeftModel.from_pretrained(
17
+ pipe.transformer,
18
+ distill_check,
19
+ )
20
 
21
  MAX_SEED = np.iinfo(np.int32).max
22
  MAX_IMAGE_SIZE = 1024
23
 
24
 
25
+ @spaces.GPU()
26
+ def infer(prompt, seed, randomize_seed):
27
+
 
 
 
 
 
 
 
 
 
28
  if randomize_seed:
29
  seed = random.randint(0, MAX_SEED)
30
 
31
  generator = torch.Generator().manual_seed(seed)
32
+ sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022]
33
+ scales = [32, 48, 64, 80, 96, 128]
34
+
35
+ images = run(
36
+ pipe,
37
+ prompt,
38
+ sigmas=sigmas,
39
+ scales=scales,
40
+ num_inference_steps=6,
41
+
42
+ guidance_scale=0.0,
43
+ height=int(scales[0] * 8),
44
+ width=int(scales[0] * 8),
45
  generator=generator,
46
+ ).images
47
 
48
+ return images
49
 
50
 
51
  examples = [
 
52
  "An astronaut riding a green horse",
53
+ 'Long-exposure night photography of a starry sky over a mountain range, with light trails.',
54
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
55
+ "A portrait of a girl with blonde, tousled hair, blue eyes",
56
  ]
57
 
58
  css = """
59
  #col-container {
60
  margin: 0 auto;
61
+ max-width: 520px;
62
  }
63
  """
64
 
65
+ if torch.cuda.is_available():
66
+ power_device = "GPU"
67
+ else:
68
+ power_device = "CPU"
69
+
70
  with gr.Blocks(css=css) as demo:
71
  with gr.Column(elem_id="col-container"):
72
+ gr.Markdown(
73
+ f"""
74
+ # ⚡ Scale-wise Distillation ⚡
75
+ # ⚡ Image Generation with 6-step SwD ⚡
76
+ This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/invertible-cd/),
77
+ a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2406.14539)
78
+ by [Yandex Research](https://github.com/yandex-research).
79
+ Currently running on {power_device}.
80
+ """
81
+ )
82
+ gr.Markdown(
83
+ "If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)"
84
+ )
85
 
86
  with gr.Row():
87
  prompt = gr.Text(
 
92
  container=False,
93
  )
94
 
95
+ run_button = gr.Button("Run", scale=0)
96
 
97
  result = gr.Image(label="Result", show_label=False)
98
 
99
  with gr.Accordion("Advanced Settings", open=False):
 
 
 
 
 
 
 
100
  seed = gr.Slider(
101
  label="Seed",
102
  minimum=0,
 
105
  value=0,
106
  )
107
 
108
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
109
+
110
+
111
+ gr.Examples(
112
+ examples=examples,
113
+ inputs=[prompt],
114
+ cache_examples=False
115
+ )
116
+ run_button.click(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
  fn=infer,
118
+ inputs=[prompt, seed, randomize_seed],
119
+ outputs=[result]
 
 
 
 
 
 
 
 
 
120
  )
121
 
122
+ demo.queue().launch(share=False)