Spaces:
Running
on
Zero
Running
on
Zero
Create inference.py
Browse files- inference.py +322 -0
inference.py
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
5 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
6 |
+
from diffusers.utils import (
|
7 |
+
USE_PEFT_BACKEND,
|
8 |
+
is_torch_xla_available,
|
9 |
+
logging,
|
10 |
+
replace_example_docstring,
|
11 |
+
scale_lora_layers,
|
12 |
+
unscale_lora_layers,
|
13 |
+
)
|
14 |
+
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput
|
15 |
+
|
16 |
+
if is_torch_xla_available():
|
17 |
+
import torch_xla.core.xla_model as xm
|
18 |
+
|
19 |
+
XLA_AVAILABLE = True
|
20 |
+
else:
|
21 |
+
XLA_AVAILABLE = False
|
22 |
+
|
23 |
+
|
24 |
+
def retrieve_timesteps(
|
25 |
+
scheduler,
|
26 |
+
num_inference_steps: Optional[int] = None,
|
27 |
+
device: Optional[Union[str, torch.device]] = None,
|
28 |
+
timesteps: Optional[List[int]] = None,
|
29 |
+
sigmas: Optional[List[float]] = None,
|
30 |
+
**kwargs,
|
31 |
+
):
|
32 |
+
if timesteps is not None and sigmas is not None:
|
33 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
34 |
+
if timesteps is not None:
|
35 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
36 |
+
if not accepts_timesteps:
|
37 |
+
raise ValueError(
|
38 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
39 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
40 |
+
)
|
41 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
42 |
+
timesteps = scheduler.timesteps
|
43 |
+
num_inference_steps = len(timesteps)
|
44 |
+
elif sigmas is not None:
|
45 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
46 |
+
if not accept_sigmas:
|
47 |
+
raise ValueError(
|
48 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
49 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
50 |
+
)
|
51 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
52 |
+
timesteps = scheduler.timesteps
|
53 |
+
num_inference_steps = len(timesteps)
|
54 |
+
else:
|
55 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
56 |
+
timesteps = scheduler.timesteps
|
57 |
+
|
58 |
+
return timesteps, num_inference_steps
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def run(
|
63 |
+
self,
|
64 |
+
prompt: Union[str, List[str]] = None,
|
65 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
66 |
+
prompt_3: Optional[Union[str, List[str]]] = None,
|
67 |
+
height: Optional[int] = None,
|
68 |
+
width: Optional[int] = None,
|
69 |
+
num_inference_steps: int = 28,
|
70 |
+
sigmas: Optional[List[float]] = None,
|
71 |
+
scales: List[float] = None,
|
72 |
+
guidance_scale: float = 7.0,
|
73 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
74 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
75 |
+
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
76 |
+
num_images_per_prompt: Optional[int] = 1,
|
77 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
78 |
+
latents: Optional[torch.FloatTensor] = None,
|
79 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
80 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
81 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
82 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
83 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
84 |
+
ip_adapter_image_embeds: Optional[torch.Tensor] = None,
|
85 |
+
output_type: Optional[str] = "pil",
|
86 |
+
return_dict: bool = True,
|
87 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
88 |
+
clip_skip: Optional[int] = None,
|
89 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
90 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
91 |
+
max_sequence_length: int = 256,
|
92 |
+
skip_guidance_layers: List[int] = None,
|
93 |
+
skip_layer_guidance_scale: float = 2.8,
|
94 |
+
skip_layer_guidance_stop: float = 0.2,
|
95 |
+
skip_layer_guidance_start: float = 0.01,
|
96 |
+
mu: Optional[float] = None,
|
97 |
+
):
|
98 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
99 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
100 |
+
|
101 |
+
# 1. Check inputs. Raise error if not correct
|
102 |
+
self.check_inputs(
|
103 |
+
prompt,
|
104 |
+
prompt_2,
|
105 |
+
prompt_3,
|
106 |
+
height,
|
107 |
+
width,
|
108 |
+
negative_prompt=negative_prompt,
|
109 |
+
negative_prompt_2=negative_prompt_2,
|
110 |
+
negative_prompt_3=negative_prompt_3,
|
111 |
+
prompt_embeds=prompt_embeds,
|
112 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
113 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
114 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
115 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
116 |
+
max_sequence_length=max_sequence_length,
|
117 |
+
)
|
118 |
+
|
119 |
+
self._guidance_scale = guidance_scale
|
120 |
+
self._skip_layer_guidance_scale = skip_layer_guidance_scale
|
121 |
+
self._clip_skip = clip_skip
|
122 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
123 |
+
self._interrupt = False
|
124 |
+
|
125 |
+
# 2. Define call parameters
|
126 |
+
if prompt is not None and isinstance(prompt, str):
|
127 |
+
batch_size = 1
|
128 |
+
elif prompt is not None and isinstance(prompt, list):
|
129 |
+
batch_size = len(prompt)
|
130 |
+
else:
|
131 |
+
batch_size = prompt_embeds.shape[0]
|
132 |
+
|
133 |
+
device = self._execution_device
|
134 |
+
|
135 |
+
lora_scale = (
|
136 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
137 |
+
)
|
138 |
+
(
|
139 |
+
prompt_embeds,
|
140 |
+
negative_prompt_embeds,
|
141 |
+
pooled_prompt_embeds,
|
142 |
+
negative_pooled_prompt_embeds,
|
143 |
+
) = self.encode_prompt(
|
144 |
+
prompt=prompt,
|
145 |
+
prompt_2=prompt_2,
|
146 |
+
prompt_3=prompt_3,
|
147 |
+
negative_prompt=negative_prompt,
|
148 |
+
negative_prompt_2=negative_prompt_2,
|
149 |
+
negative_prompt_3=negative_prompt_3,
|
150 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
151 |
+
prompt_embeds=prompt_embeds,
|
152 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
153 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
154 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
155 |
+
device=device,
|
156 |
+
clip_skip=self.clip_skip,
|
157 |
+
num_images_per_prompt=num_images_per_prompt,
|
158 |
+
max_sequence_length=max_sequence_length,
|
159 |
+
lora_scale=lora_scale,
|
160 |
+
)
|
161 |
+
|
162 |
+
if self.do_classifier_free_guidance:
|
163 |
+
if skip_guidance_layers is not None:
|
164 |
+
original_prompt_embeds = prompt_embeds
|
165 |
+
original_pooled_prompt_embeds = pooled_prompt_embeds
|
166 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
167 |
+
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
168 |
+
|
169 |
+
# 4. Prepare latent variables
|
170 |
+
num_channels_latents = self.transformer.config.in_channels
|
171 |
+
latents = self.prepare_latents(
|
172 |
+
batch_size * num_images_per_prompt,
|
173 |
+
num_channels_latents,
|
174 |
+
height,
|
175 |
+
width,
|
176 |
+
prompt_embeds.dtype,
|
177 |
+
device,
|
178 |
+
generator,
|
179 |
+
latents,
|
180 |
+
)
|
181 |
+
|
182 |
+
# 5. Prepare timesteps
|
183 |
+
scheduler_kwargs = {}
|
184 |
+
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None:
|
185 |
+
_, _, height, width = latents.shape
|
186 |
+
image_seq_len = (height // self.transformer.config.patch_size) * (
|
187 |
+
width // self.transformer.config.patch_size
|
188 |
+
)
|
189 |
+
mu = calculate_shift(
|
190 |
+
image_seq_len,
|
191 |
+
self.scheduler.config.get("base_image_seq_len", 256),
|
192 |
+
self.scheduler.config.get("max_image_seq_len", 4096),
|
193 |
+
self.scheduler.config.get("base_shift", 0.5),
|
194 |
+
self.scheduler.config.get("max_shift", 1.16),
|
195 |
+
)
|
196 |
+
scheduler_kwargs["mu"] = mu
|
197 |
+
elif mu is not None:
|
198 |
+
scheduler_kwargs["mu"] = mu
|
199 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
200 |
+
self.scheduler,
|
201 |
+
num_inference_steps,
|
202 |
+
device,
|
203 |
+
sigmas=sigmas,
|
204 |
+
**scheduler_kwargs,
|
205 |
+
)
|
206 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
207 |
+
self._num_timesteps = len(timesteps)
|
208 |
+
|
209 |
+
# 6. Prepare image embeddings
|
210 |
+
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None:
|
211 |
+
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds(
|
212 |
+
ip_adapter_image,
|
213 |
+
ip_adapter_image_embeds,
|
214 |
+
device,
|
215 |
+
batch_size * num_images_per_prompt,
|
216 |
+
self.do_classifier_free_guidance,
|
217 |
+
)
|
218 |
+
|
219 |
+
if self.joint_attention_kwargs is None:
|
220 |
+
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds}
|
221 |
+
else:
|
222 |
+
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
|
223 |
+
|
224 |
+
# 7. Denoising loop
|
225 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
226 |
+
for i, t in enumerate(timesteps):
|
227 |
+
if self.interrupt:
|
228 |
+
continue
|
229 |
+
|
230 |
+
# expand the latents if we are doing classifier free guidance
|
231 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
232 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
233 |
+
timestep = t.expand(latent_model_input.shape[0])
|
234 |
+
|
235 |
+
noise_pred = self.transformer(
|
236 |
+
hidden_states=latent_model_input,
|
237 |
+
timestep=timestep,
|
238 |
+
encoder_hidden_states=prompt_embeds,
|
239 |
+
pooled_projections=pooled_prompt_embeds,
|
240 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
241 |
+
return_dict=False,
|
242 |
+
)[0]
|
243 |
+
|
244 |
+
# perform guidance
|
245 |
+
if self.do_classifier_free_guidance:
|
246 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
247 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
248 |
+
should_skip_layers = (
|
249 |
+
True
|
250 |
+
if i > num_inference_steps * skip_layer_guidance_start
|
251 |
+
and i < num_inference_steps * skip_layer_guidance_stop
|
252 |
+
else False
|
253 |
+
)
|
254 |
+
if skip_guidance_layers is not None and should_skip_layers:
|
255 |
+
timestep = t.expand(latents.shape[0])
|
256 |
+
latent_model_input = latents
|
257 |
+
noise_pred_skip_layers = self.transformer(
|
258 |
+
hidden_states=latent_model_input,
|
259 |
+
timestep=timestep,
|
260 |
+
encoder_hidden_states=original_prompt_embeds,
|
261 |
+
pooled_projections=original_pooled_prompt_embeds,
|
262 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
263 |
+
return_dict=False,
|
264 |
+
skip_layers=skip_guidance_layers,
|
265 |
+
)[0]
|
266 |
+
noise_pred = (
|
267 |
+
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale
|
268 |
+
)
|
269 |
+
|
270 |
+
# compute the previous noisy sample x_t -> x_t-1
|
271 |
+
latents_dtype = latents.dtype
|
272 |
+
sigma = self.scheduler.sigmas[i]
|
273 |
+
sigma_next = self.scheduler.sigmas[i + 1]
|
274 |
+
x0_pred = (latents - sigma * noise_pred)
|
275 |
+
try:
|
276 |
+
x0_pred = torch.nn.functional.interpolate(x0_pred, size=scales[i + 1])
|
277 |
+
except IndexError:
|
278 |
+
x0_pred = x0_pred
|
279 |
+
noise = torch.randn(x0_pred.shape, generator=generator).to('cuda').half()
|
280 |
+
latents = (1 - sigma_next) * x0_pred + sigma_next * noise
|
281 |
+
|
282 |
+
if latents.dtype != latents_dtype:
|
283 |
+
if torch.backends.mps.is_available():
|
284 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
285 |
+
latents = latents.to(latents_dtype)
|
286 |
+
|
287 |
+
if callback_on_step_end is not None:
|
288 |
+
callback_kwargs = {}
|
289 |
+
for k in callback_on_step_end_tensor_inputs:
|
290 |
+
callback_kwargs[k] = locals()[k]
|
291 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
292 |
+
|
293 |
+
latents = callback_outputs.pop("latents", latents)
|
294 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
295 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
296 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
297 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
298 |
+
)
|
299 |
+
|
300 |
+
# call the callback, if provided
|
301 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
302 |
+
progress_bar.update()
|
303 |
+
|
304 |
+
if XLA_AVAILABLE:
|
305 |
+
xm.mark_step()
|
306 |
+
|
307 |
+
if output_type == "latent":
|
308 |
+
image = latents
|
309 |
+
|
310 |
+
else:
|
311 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
312 |
+
|
313 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
314 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
315 |
+
|
316 |
+
# Offload all models
|
317 |
+
self.maybe_free_model_hooks()
|
318 |
+
|
319 |
+
if not return_dict:
|
320 |
+
return (image,)
|
321 |
+
|
322 |
+
return StableDiffusion3PipelineOutput(images=image)
|