Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import torch | |
from typing import Any, Callable, Dict, List, Optional, Union | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.pipelines.stable_diffusion_3.pipeline_output import StableDiffusion3PipelineOutput | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
def run( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
prompt_3: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 28, | |
sigmas: Optional[List[float]] = None, | |
timesteps: Optional[List[float]] = None, | |
scales: List[float] = None, | |
guidance_scale: float = 7.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
negative_prompt_3: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[torch.Tensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
max_sequence_length: int = 256, | |
skip_guidance_layers: List[int] = None, | |
skip_layer_guidance_scale: float = 2.8, | |
skip_layer_guidance_stop: float = 0.2, | |
skip_layer_guidance_start: float = 0.01, | |
mu: Optional[float] = None, | |
): | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
prompt_3, | |
height, | |
width, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
negative_prompt_3=negative_prompt_3, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
max_sequence_length=max_sequence_length, | |
) | |
self._guidance_scale = guidance_scale | |
self._skip_layer_guidance_scale = skip_layer_guidance_scale | |
self._clip_skip = clip_skip | |
self._joint_attention_kwargs = joint_attention_kwargs | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
lora_scale = ( | |
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
prompt_3=prompt_3, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
negative_prompt_3=negative_prompt_3, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
device=device, | |
clip_skip=self.clip_skip, | |
num_images_per_prompt=num_images_per_prompt, | |
max_sequence_length=max_sequence_length, | |
lora_scale=lora_scale, | |
) | |
if self.do_classifier_free_guidance: | |
if skip_guidance_layers is not None: | |
original_prompt_embeds = prompt_embeds | |
original_pooled_prompt_embeds = pooled_prompt_embeds | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) | |
# 4. Prepare latent variables | |
num_channels_latents = self.transformer.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 5. Prepare timesteps | |
scheduler_kwargs = {} | |
if self.scheduler.config.get("use_dynamic_shifting", None) and mu is None: | |
_, _, height, width = latents.shape | |
image_seq_len = (height // self.transformer.config.patch_size) * ( | |
width // self.transformer.config.patch_size | |
) | |
mu = calculate_shift( | |
image_seq_len, | |
self.scheduler.config.get("base_image_seq_len", 256), | |
self.scheduler.config.get("max_image_seq_len", 4096), | |
self.scheduler.config.get("base_shift", 0.5), | |
self.scheduler.config.get("max_shift", 1.16), | |
) | |
scheduler_kwargs["mu"] = mu | |
elif mu is not None: | |
scheduler_kwargs["mu"] = mu | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
self._num_timesteps = len(timesteps) | |
# 6. Prepare image embeddings | |
if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None: | |
ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
if self.joint_attention_kwargs is None: | |
self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds} | |
else: | |
self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds) | |
# 7. Denoising loop | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timestep = t.expand(latent_model_input.shape[0]) | |
noise_pred = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=prompt_embeds, | |
pooled_projections=pooled_prompt_embeds, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
should_skip_layers = ( | |
True | |
if i > num_inference_steps * skip_layer_guidance_start | |
and i < num_inference_steps * skip_layer_guidance_stop | |
else False | |
) | |
if skip_guidance_layers is not None and should_skip_layers: | |
timestep = t.expand(latents.shape[0]) | |
latent_model_input = latents | |
noise_pred_skip_layers = self.transformer( | |
hidden_states=latent_model_input, | |
timestep=timestep, | |
encoder_hidden_states=original_prompt_embeds, | |
pooled_projections=original_pooled_prompt_embeds, | |
joint_attention_kwargs=self.joint_attention_kwargs, | |
return_dict=False, | |
skip_layers=skip_guidance_layers, | |
)[0] | |
noise_pred = ( | |
noise_pred + (noise_pred_text - noise_pred_skip_layers) * self._skip_layer_guidance_scale | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
sigma = sigmas[i] | |
sigma_next = sigmas[i + 1] | |
x0_pred = (latents - sigma * noise_pred) | |
try: | |
x0_pred = torch.nn.functional.interpolate(x0_pred, size=scales[i + 1], mode='bicubic') | |
except IndexError: | |
x0_pred = x0_pred | |
noise = torch.randn(x0_pred.shape, generator=generator).to('cuda').half() | |
latents = (1 - sigma_next) * x0_pred + sigma_next * noise | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if output_type == "latent": | |
image = latents | |
else: | |
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusion3PipelineOutput(images=image) |