Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import numpy as np | |
import random | |
import functools | |
import os | |
import torch | |
from diffusers import StableDiffusion3Pipeline | |
from diffusers import DiffusionPipeline | |
from inference import run | |
from peft import LoraConfig, get_peft_model, PeftModel | |
huggingface_token = os.getenv("HF_TOKEN") | |
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", | |
torch_dtype=torch.float16, | |
token=huggingface_token) | |
pipe = pipe.to("cuda") | |
distill_check = 'yresearch/swd-large-6-steps' | |
pipe.transformer = PeftModel.from_pretrained( | |
pipe.transformer, | |
distill_check, | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
def infer(prompt, seed, randomize_seed): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022, 0.0000] | |
scales = [32, 48, 64, 80, 96, 128] | |
images = run( | |
pipe, | |
prompt, | |
sigmas=torch.tensor(sigmas).to('cuda'), | |
timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000, | |
scales=scales, | |
guidance_scale=0.0, | |
height=int(scales[0] * 8), | |
width=int(scales[0] * 8), | |
generator=generator, | |
).images[0] | |
return images | |
examples = [ | |
"3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background", | |
'Long-exposure night photography of a starry sky over a mountain range, with light trails.', | |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
"A gold astronaut meditating in a lush green forest by a lake", | |
"A group of friends sitting around a campfire." | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown( | |
f""" | |
# ⚡ Scale-wise Distillation ⚡ | |
# ⚡ Image Generation with 6-step SwD ⚡ | |
This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/swd/), | |
a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2503.16397) | |
by [Yandex Research](https://github.com/yandex-research). | |
Currently running on {power_device}. | |
""" | |
) | |
gr.Markdown( | |
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/swd' target='_blank'>Github Repo</a>. [](https://github.com/yandex-research/invertible-cd)" | |
) | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
gr.Examples( | |
examples=examples, | |
inputs=[prompt], | |
cache_examples=False | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[prompt, seed, randomize_seed], | |
outputs=[result] | |
) | |
demo.queue().launch(share=False) |