Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import spaces | |
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import functools | |
| import os | |
| import torch | |
| from diffusers import StableDiffusion3Pipeline | |
| from diffusers import DiffusionPipeline | |
| from inference import run | |
| from peft import LoraConfig, get_peft_model, PeftModel | |
| huggingface_token = os.getenv("HF_TOKEN") | |
| pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", | |
| torch_dtype=torch.bfloat16, | |
| token=huggingface_token) | |
| pipe = pipe.to("cuda") | |
| distill_check = 'yresearch/swd-large-6-steps' | |
| pipe.transformer = PeftModel.from_pretrained( | |
| pipe.transformer, | |
| distill_check, | |
| ) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| def infer(prompt, seed, randomize_seed): | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator().manual_seed(seed) | |
| sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022] | |
| scales = [32, 48, 64, 80, 96, 128] | |
| images = run( | |
| pipe, | |
| prompt, | |
| sigmas=sigmas, | |
| scales=scales, | |
| num_inference_steps=6, | |
| guidance_scale=0.0, | |
| height=int(scales[0] * 8), | |
| width=int(scales[0] * 8), | |
| generator=generator, | |
| ).images | |
| return images | |
| examples = [ | |
| "An astronaut riding a green horse", | |
| 'Long-exposure night photography of a starry sky over a mountain range, with light trails.', | |
| "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
| "A portrait of a girl with blonde, tousled hair, blue eyes", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 520px; | |
| } | |
| """ | |
| if torch.cuda.is_available(): | |
| power_device = "GPU" | |
| else: | |
| power_device = "CPU" | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown( | |
| f""" | |
| # ⚡ Scale-wise Distillation ⚡ | |
| # ⚡ Image Generation with 6-step SwD ⚡ | |
| This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/invertible-cd/), | |
| a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2406.14539) | |
| by [Yandex Research](https://github.com/yandex-research). | |
| Currently running on {power_device}. | |
| """ | |
| ) | |
| gr.Markdown( | |
| "If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [](https://github.com/yandex-research/invertible-cd)" | |
| ) | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=[prompt], | |
| cache_examples=False | |
| ) | |
| run_button.click( | |
| fn=infer, | |
| inputs=[prompt, seed, randomize_seed], | |
| outputs=[result] | |
| ) | |
| demo.queue().launch(share=False) | 
