File size: 3,919 Bytes
508c6aa
03dc85f
 
 
508c6aa
454c31b
03dc85f
508c6aa
2e61df7
508c6aa
 
03dc85f
ebd1faf
454c31b
33a4a1f
09b5182
454c31b
03dc85f
2e61df7
508c6aa
 
 
 
03dc85f
 
 
 
 
508c6aa
 
 
03dc85f
 
 
 
778b7ae
508c6aa
778b7ae
508c6aa
778b7ae
 
 
 
 
 
 
 
 
 
951aec2
03dc85f
508c6aa
03dc85f
 
 
f1881bd
508c6aa
 
f1881bd
 
03dc85f
 
 
 
 
508c6aa
03dc85f
 
 
508c6aa
 
 
 
 
03dc85f
 
508c6aa
 
 
 
2b68dc9
 
508c6aa
 
 
 
 
2b68dc9
508c6aa
03dc85f
 
 
 
 
 
 
 
 
 
508c6aa
03dc85f
 
 
 
 
 
 
 
 
 
 
 
508c6aa
 
 
 
 
 
08ba86b
508c6aa
 
03dc85f
508c6aa
 
03dc85f
 
508c6aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import spaces
import gradio as gr
import numpy as np
import random
import functools
import os
import torch
from diffusers import StableDiffusion3Pipeline
from diffusers import DiffusionPipeline
from inference import run
from peft import LoraConfig, get_peft_model, PeftModel

huggingface_token = os.getenv("HF_TOKEN")
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large",
                                                torch_dtype=torch.float16,
                                                token=huggingface_token)
pipe = pipe.to("cuda")

distill_check = 'yresearch/swd-large-6-steps'
pipe.transformer = PeftModel.from_pretrained(
    pipe.transformer,
    distill_check,
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU()
def infer(prompt, seed, randomize_seed):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)
    sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022, 0.0000]
    scales = [32, 48, 64, 80, 96, 128]
    
    images = run(
            pipe,
            prompt,
            sigmas=torch.tensor(sigmas).to('cuda'),
            timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000,
            scales=scales,
        
            guidance_scale=0.0,
            height=int(scales[0] * 8),
            width=int(scales[0] * 8),
            generator=generator,
        ).images[0]

    return images


examples = [
    "3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background",
    'Long-exposure night photography of a starry sky over a mountain range, with light trails.',
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "A gold astronaut meditating in a lush green forest by a lake",
    "A group of friends sitting around a campfire."
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            f"""
        # ⚡ Scale-wise Distillation ⚡ 
        # ⚡ Image Generation with 6-step SwD ⚡
        This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/swd/), 
        a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2503.16397)
        by [Yandex Research](https://github.com/yandex-research).
        Currently running on {power_device}.
        """
        )
        gr.Markdown(
            "If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/swd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)"
        )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)


        gr.Examples(
            examples=examples,
            inputs=[prompt],
            cache_examples=False
        )
    run_button.click(
        fn=infer,
        inputs=[prompt, seed, randomize_seed],
        outputs=[result]
    )

demo.queue().launch(share=False)