Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,919 Bytes
508c6aa 03dc85f 508c6aa 454c31b 03dc85f 508c6aa 2e61df7 508c6aa 03dc85f ebd1faf 454c31b 33a4a1f 09b5182 454c31b 03dc85f 2e61df7 508c6aa 03dc85f 508c6aa 03dc85f 778b7ae 508c6aa 778b7ae 508c6aa 778b7ae 951aec2 03dc85f 508c6aa 03dc85f f1881bd 508c6aa f1881bd 03dc85f 508c6aa 03dc85f 508c6aa 03dc85f 508c6aa 2b68dc9 508c6aa 2b68dc9 508c6aa 03dc85f 508c6aa 03dc85f 508c6aa 08ba86b 508c6aa 03dc85f 508c6aa 03dc85f 508c6aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import spaces
import gradio as gr
import numpy as np
import random
import functools
import os
import torch
from diffusers import StableDiffusion3Pipeline
from diffusers import DiffusionPipeline
from inference import run
from peft import LoraConfig, get_peft_model, PeftModel
huggingface_token = os.getenv("HF_TOKEN")
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large",
torch_dtype=torch.float16,
token=huggingface_token)
pipe = pipe.to("cuda")
distill_check = 'yresearch/swd-large-6-steps'
pipe.transformer = PeftModel.from_pretrained(
pipe.transformer,
distill_check,
)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU()
def infer(prompt, seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022, 0.0000]
scales = [32, 48, 64, 80, 96, 128]
images = run(
pipe,
prompt,
sigmas=torch.tensor(sigmas).to('cuda'),
timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000,
scales=scales,
guidance_scale=0.0,
height=int(scales[0] * 8),
width=int(scales[0] * 8),
generator=generator,
).images[0]
return images
examples = [
"3d digital art of an adorable ghost, holding a heart shaped pumpkin, Halloween, super cute, spooky haunted house background",
'Long-exposure night photography of a starry sky over a mountain range, with light trails.',
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"A gold astronaut meditating in a lush green forest by a lake",
"A group of friends sitting around a campfire."
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
f"""
# ⚡ Scale-wise Distillation ⚡
# ⚡ Image Generation with 6-step SwD ⚡
This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/swd/),
a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2503.16397)
by [Yandex Research](https://github.com/yandex-research).
Currently running on {power_device}.
"""
)
gr.Markdown(
"If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/swd' target='_blank'>Github Repo</a>. [](https://github.com/yandex-research/invertible-cd)"
)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
gr.Examples(
examples=examples,
inputs=[prompt],
cache_examples=False
)
run_button.click(
fn=infer,
inputs=[prompt, seed, randomize_seed],
outputs=[result]
)
demo.queue().launch(share=False) |