File size: 3,511 Bytes
508c6aa
03dc85f
 
 
508c6aa
03dc85f
508c6aa
 
 
03dc85f
508c6aa
 
 
03dc85f
508c6aa
 
 
 
 
03dc85f
 
 
 
 
508c6aa
 
 
03dc85f
 
 
 
508c6aa
 
 
 
 
 
 
 
 
 
 
 
 
03dc85f
508c6aa
03dc85f
508c6aa
03dc85f
 
 
 
508c6aa
 
 
03dc85f
 
 
 
 
508c6aa
03dc85f
 
 
508c6aa
 
 
 
 
03dc85f
 
508c6aa
 
 
 
 
 
 
 
 
 
 
 
 
03dc85f
 
 
 
 
 
 
 
 
 
508c6aa
03dc85f
 
 
 
 
 
 
 
 
 
 
 
508c6aa
 
 
 
 
 
 
 
 
03dc85f
508c6aa
 
03dc85f
 
508c6aa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import spaces
import gradio as gr
import numpy as np
import random
import functools
import torch
from diffusers import StableDiffusion3Pipeline
from inference import run
from peft import LoraConfig, get_peft_model, PeftModel

pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium",
                                                torch_dtype=torch.float16)
pipe = pipe.to("cuda")

distill_check = 'yresearch/swd-medium-6-steps'
pipe.transformer = PeftModel.from_pretrained(
    pipe.transformer,
    distill_check,
)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


@spaces.GPU()
def infer(prompt, seed, randomize_seed):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)
    sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022]
    scales = [32, 48, 64, 80, 96, 128]

    images = run(
        pipe,
        prompt,
        sigmas=sigmas,
        scales=scales,
        num_inference_steps=6,

        guidance_scale=0.0,
        height=int(scales[0] * 8),
        width=int(scales[0] * 8),
        generator=generator,
    ).images

    return images


examples = [
    "An astronaut riding a green horse",
    'Long-exposure night photography of a starry sky over a mountain range, with light trails.',
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "A portrait of a girl with blonde, tousled hair, blue eyes",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            f"""
        # ⚡ Scale-wise Distillation ⚡ 
        # ⚡ Image Generation with 6-step SwD ⚡
        This is a demo of [Scale-wise Distillation](https://yandex-research.github.io/invertible-cd/), 
        a diffusion distillation method proposed in [Scale-wise Distillation of Diffusion Models](https://arxiv.org/abs/2406.14539)
        by [Yandex Research](https://github.com/yandex-research).
        Currently running on {power_device}.
        """
        )
        gr.Markdown(
            "If you enjoy the space, feel free to give a ⭐ to the <a href='https://github.com/yandex-research/invertible-cd' target='_blank'>Github Repo</a>. [![GitHub Stars](https://img.shields.io/github/stars/yandex-research/invertible-cd?style=social)](https://github.com/yandex-research/invertible-cd)"
        )

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)


        gr.Examples(
            examples=examples,
            inputs=[prompt],
            cache_examples=False
        )
    run_button.click(
        fn=infer,
        inputs=[prompt, seed, randomize_seed],
        outputs=[result]
    )

demo.queue().launch(share=False)