import requests import logging from config import HEADERS, MODEL_OPTIONS, DEFAULT_MODEL # 設定 logging logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") CURRENT_MODEL = DEFAULT_MODEL API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}" # 📌 呼叫 Hugging Face API 進行情緒分析 def analyze_sentiment(text, model_name=None): global CURRENT_MODEL, API_URL if model_name and MODEL_OPTIONS[model_name] != CURRENT_MODEL: CURRENT_MODEL = MODEL_OPTIONS[model_name] API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}" logging.info(f"🔄 切換模型: {CURRENT_MODEL}") try: logging.info("🚀 發送 API 請求...") response = requests.post(API_URL, headers=HEADERS, json={"inputs": text}) response.raise_for_status() result = response.json() logging.info(f"✅ API 回應: {result}") if isinstance(result, list) and len(result) > 0: sentiment = result[0]["label"] confidence = result[0]["score"] return f"**情緒分類**: {sentiment}\n**AI 信心度**: {confidence*100:.2f}%", confidence else: return "⚠️ **無法分析文本,請稍後再試**", 0.0 except requests.exceptions.RequestException as e: logging.error(f"❌ API 請求錯誤: {e}") return f"❌ **API 請求錯誤**: {str(e)}", 0.0 except ValueError as e: logging.error(f"❌ JSON 解碼錯誤: {e}") return f"❌ **JSON 解碼錯誤**: {str(e)}", 0.0 except KeyError as e: logging.error(f"❌ 字典鍵錯誤: {e}") return f"❌ **字典鍵錯誤**: {str(e)}", 0.0 except Exception as e: logging.error(f"❌ 未知錯誤: {e}") return f"❌ **未知錯誤**: {str(e)}", 0.0