sentiment-analysis / sentiment.py
dayuian's picture
Update sentiment.py
35b16c8 verified
raw
history blame
1.86 kB
import requests
import logging
from config import HEADERS, MODEL_OPTIONS, DEFAULT_MODEL
# 設定 logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
CURRENT_MODEL = DEFAULT_MODEL
API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}"
# 📌 呼叫 Hugging Face API 進行情緒分析
def analyze_sentiment(text, model_name=None):
global CURRENT_MODEL, API_URL
if model_name and MODEL_OPTIONS[model_name] != CURRENT_MODEL:
CURRENT_MODEL = MODEL_OPTIONS[model_name]
API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}"
logging.info(f"🔄 切換模型: {CURRENT_MODEL}")
try:
logging.info("🚀 發送 API 請求...")
response = requests.post(API_URL, headers=HEADERS, json={"inputs": text})
response.raise_for_status()
result = response.json()
logging.info(f"✅ API 回應: {result}")
if isinstance(result, list) and len(result) > 0:
sentiment = result[0]["label"]
confidence = result[0]["score"]
return f"**情緒分類**: {sentiment}\n**AI 信心度**: {confidence*100:.2f}%", confidence
else:
return "⚠️ **無法分析文本,請稍後再試**", 0.0
except requests.exceptions.RequestException as e:
logging.error(f"❌ API 請求錯誤: {e}")
return f"❌ **API 請求錯誤**: {str(e)}", 0.0
except ValueError as e:
logging.error(f"❌ JSON 解碼錯誤: {e}")
return f"❌ **JSON 解碼錯誤**: {str(e)}", 0.0
except KeyError as e:
logging.error(f"❌ 字典鍵錯誤: {e}")
return f"❌ **字典鍵錯誤**: {str(e)}", 0.0
except Exception as e:
logging.error(f"❌ 未知錯誤: {e}")
return f"❌ **未知錯誤**: {str(e)}", 0.0