Spaces:
Running
Running
import requests | |
import logging | |
from config import HEADERS | |
# 設定 logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
CURRENT_MODEL = "cardiffnlp/twitter-xlm-roberta-base-sentiment" | |
API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}" | |
def analyze_sentiment(text, model_id=None): | |
global CURRENT_MODEL, API_URL | |
if model_id and model_id != CURRENT_MODEL: | |
CURRENT_MODEL = model_id | |
API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}" | |
logging.info(f" 重新載入模型: {CURRENT_MODEL}") | |
try: | |
logging.info(" 發送 API 請求...") | |
response = requests.post(API_URL, headers=HEADERS, json={"inputs": text}) | |
response.raise_for_status() # 檢查 HTTP 狀態碼 | |
result = response.json() | |
logging.info(f"✅ API 回應: {result}") | |
if isinstance(result, list) and len(result) > 0: | |
sentiment = result[0]["label"] | |
confidence = result[0]["score"] | |
return f"**情緒分類**: {sentiment}\n**AI 信心度**: {confidence*100:.2f}%", confidence | |
else: | |
return "⚠️ **無法分析文本,請稍後再試**", 0.0 | |
except requests.exceptions.RequestException as e: | |
logging.error(f"❌ API 請求錯誤: {e}") | |
return f"❌ **API 請求錯誤**: {str(e)}", 0.0 | |
except ValueError as e: | |
logging.error(f"❌ JSON 解碼錯誤: {e}") | |
return f"❌ **JSON 解碼錯誤**: {str(e)}", 0.0 | |
except KeyError as e: | |
logging.error(f"❌ 字典鍵錯誤: {e}") | |
return f"❌ **字典鍵錯誤**: {str(e)}", 0.0 | |
except Exception as e: | |
logging.error(f"❌ 未知錯誤: {e}") | |
return f"❌ **未知錯誤**: {str(e)}", 0.0 |