File size: 1,228 Bytes
798086e
a3452de
798086e
4c62000
 
 
 
 
 
 
3dd72e9
4c62000
 
 
3dd72e9
4c62000
798086e
3dd72e9
798086e
 
3dd72e9
798086e
 
3dd72e9
798086e
3dd72e9
798086e
d0d7338
798086e
 
3dd72e9
d0d7338
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import requests
from config import HEADERS

# 📌 預設載入的模型
CURRENT_MODEL = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}"

def analyze_sentiment(text, model_id=None):
    global CURRENT_MODEL, API_URL

    # 📌 **只在模型變更時更新 API URL**
    if model_id and model_id != CURRENT_MODEL:
        CURRENT_MODEL = model_id
        API_URL = f"https://api-inference.huggingface.co/models/{CURRENT_MODEL}"
        print(f"🔄 重新載入模型: {CURRENT_MODEL}")

    try:
        print("🚀 發送 API 請求...")
        response = requests.post(API_URL, headers=HEADERS, json={"inputs": text})
        result = response.json()
        print(f"✅ API 回應: {result}")

        if isinstance(result, list) and len(result) > 0:
            sentiment = result[0]["label"]
            confidence = result[0]["score"]
            return f"**情緒分類**: {sentiment}\n**AI 信心度**: {confidence*100:.2f}%", confidence
        else:
            return "⚠️ **無法分析文本,請稍後再試**", 0.0
    
    except Exception as e:
        print(f"❌ API 錯誤: {e}")
        return f"❌ **錯誤**: {str(e)}", 0.0