from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_LIST = [ "EleutherAI/pythia-410m", "EleutherAI/pythia-1b", "mistralai/Mistral-7B-Instruct" ] MODEL_CACHE = {} def load_model(model_name): if model_name not in MODEL_CACHE: tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) MODEL_CACHE[model_name] = (tokenizer, model) return MODEL_CACHE[model_name] def generate_sentence(word, model_name): tokenizer, model = load_model(model_name) prompt = f"A simple English sentence with the word '{word}':" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=30) sentence = tokenizer.decode(outputs[0], skip_special_tokens=True) return sentence