from transformers import AutoModelForCausalLM, AutoTokenizer from ai_sentence import load_model # 生成選擇題 def generate_mcq(word, model_name): tokenizer, model = load_model(model_name) prompt = f"Write a simple multiple-choice English question for beginners using the word '{word}'. Provide 4 options labeled A, B, C, D, and mark the correct answer." inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=50, temperature=0.7, top_p=0.9 ) question = tokenizer.decode(outputs[0], skip_special_tokens=True) return question # 對答案(未來補) def check_answer(user_answer, correct_answer): return user_answer == correct_answer # 計算分數(未來補) def calculate_score(total, correct): return f"{correct}/{total} 分"