Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,56 +3,77 @@ import json
|
|
| 3 |
import random
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import os
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
model_name = "EleutherAI/pythia-410m"
|
| 9 |
-
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
|
| 13 |
-
#
|
| 14 |
DATA_DIR = "./data"
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
try:
|
| 19 |
-
# 動態讀取指定資料檔
|
| 20 |
data_path = os.path.join(DATA_DIR, f"{source}.json")
|
| 21 |
with open(data_path, 'r', encoding='utf-8') as f:
|
| 22 |
words = json.load(f)
|
| 23 |
|
| 24 |
-
# 隨機抽取
|
| 25 |
selected_words = random.sample(words, n)
|
| 26 |
results = []
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
word = word_data['word']
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 34 |
outputs = model.generate(**inputs, max_new_tokens=30)
|
| 35 |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
|
|
|
|
|
|
|
| 37 |
results.append({
|
| 38 |
"word": word,
|
| 39 |
"phonetic": word_data["phonetic"],
|
| 40 |
-
"sentence":
|
| 41 |
})
|
| 42 |
|
| 43 |
-
|
|
|
|
| 44 |
|
| 45 |
except Exception as e:
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
# Gradio
|
| 49 |
demo = gr.Interface(
|
| 50 |
fn=get_words_with_sentences,
|
| 51 |
inputs=[
|
| 52 |
-
gr.
|
| 53 |
gr.Number(value=10, label="抽幾個單字")
|
| 54 |
],
|
| 55 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
demo.launch()
|
|
|
|
| 3 |
import random
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import os
|
| 6 |
+
import re
|
| 7 |
|
| 8 |
+
# 模型初始化
|
| 9 |
model_name = "EleutherAI/pythia-410m"
|
|
|
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
|
| 13 |
+
# 資料夾
|
| 14 |
DATA_DIR = "./data"
|
| 15 |
|
| 16 |
+
# 自動掃描資料夾生成選單
|
| 17 |
+
def get_sources():
|
| 18 |
+
files = os.listdir(DATA_DIR)
|
| 19 |
+
sources = [f.split(".json")[0] for f in files if f.endswith(".json")]
|
| 20 |
+
return sources
|
| 21 |
+
|
| 22 |
+
# 清理 GPT 生成句子的雜訊
|
| 23 |
+
def clean_sentence(output):
|
| 24 |
+
output = re.sub(r"Write.*?beginners\.", "", output, flags=re.IGNORECASE).strip()
|
| 25 |
+
output = re.sub(r"\*\*?\d+\.*\*\*", "", output).strip()
|
| 26 |
+
if not output.endswith("."):
|
| 27 |
+
output += "."
|
| 28 |
+
return output
|
| 29 |
+
|
| 30 |
+
# 核心函數
|
| 31 |
+
def get_words_with_sentences(source, n):
|
| 32 |
+
status = []
|
| 33 |
try:
|
|
|
|
| 34 |
data_path = os.path.join(DATA_DIR, f"{source}.json")
|
| 35 |
with open(data_path, 'r', encoding='utf-8') as f:
|
| 36 |
words = json.load(f)
|
| 37 |
|
|
|
|
| 38 |
selected_words = random.sample(words, n)
|
| 39 |
results = []
|
| 40 |
|
| 41 |
+
for i, word_data in enumerate(selected_words):
|
| 42 |
+
status.append(f"正在生成第 {i+1}/{n} 個單字 [{word_data['word']}] 例句...")
|
| 43 |
word = word_data['word']
|
| 44 |
+
|
| 45 |
+
prompt = f"Use the word '{word}' in a simple English sentence suitable for beginners. Output only the sentence."
|
| 46 |
|
| 47 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 48 |
outputs = model.generate(**inputs, max_new_tokens=30)
|
| 49 |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 50 |
|
| 51 |
+
clean_output = clean_sentence(sentence)
|
| 52 |
+
|
| 53 |
results.append({
|
| 54 |
"word": word,
|
| 55 |
"phonetic": word_data["phonetic"],
|
| 56 |
+
"sentence": clean_output
|
| 57 |
})
|
| 58 |
|
| 59 |
+
status.append("✅ 完成!")
|
| 60 |
+
return results, status
|
| 61 |
|
| 62 |
except Exception as e:
|
| 63 |
+
status.append(f"❌ 發生錯誤: {str(e)}")
|
| 64 |
+
return [], status
|
| 65 |
|
| 66 |
+
# Gradio 介面
|
| 67 |
demo = gr.Interface(
|
| 68 |
fn=get_words_with_sentences,
|
| 69 |
inputs=[
|
| 70 |
+
gr.Dropdown(choices=get_sources(), value="common3000", label="選擇單字庫", interactive=True, show_clear_button=False),
|
| 71 |
gr.Number(value=10, label="抽幾個單字")
|
| 72 |
],
|
| 73 |
+
outputs=[
|
| 74 |
+
gr.JSON(label="生成結果"),
|
| 75 |
+
gr.JSON(label="生成進度")
|
| 76 |
+
]
|
| 77 |
)
|
| 78 |
|
| 79 |
demo.launch()
|