Spaces:
Running
Running
Update vocab.py
Browse files
vocab.py
CHANGED
@@ -1,79 +1,124 @@
|
|
|
|
1 |
import json
|
2 |
import random
|
3 |
import os
|
4 |
import re
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
-
#
|
8 |
model_name = "EleutherAI/pythia-410m"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
11 |
|
|
|
12 |
DATA_DIR = "./data"
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def get_sources():
|
15 |
-
"""掃描資料夾,回傳所有單字庫名稱"""
|
16 |
files = os.listdir(DATA_DIR)
|
17 |
sources = [f.split(".json")[0] for f in files if f.endswith(".json")]
|
18 |
return sources
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def clean_sentence(output):
|
22 |
-
|
|
|
23 |
output = re.sub(r"Write.*?beginners\.", "", output, flags=re.IGNORECASE).strip()
|
24 |
output = re.sub(r"\*\*?\d+\.*\*\*", "", output).strip()
|
25 |
if not output.endswith("."):
|
26 |
output += "."
|
27 |
return output
|
28 |
|
29 |
-
|
30 |
def get_words_with_sentences(source, n):
|
31 |
-
"""抽取單字 + 生成例句,回傳結果和狀態"""
|
32 |
status = []
|
33 |
display_result = ""
|
|
|
34 |
try:
|
35 |
-
#
|
36 |
data_path = os.path.join(DATA_DIR, f"{source}.json")
|
37 |
with open(data_path, 'r', encoding='utf-8') as f:
|
38 |
words = json.load(f)
|
39 |
|
40 |
-
# 隨機抽取
|
41 |
selected_words = random.sample(words, n)
|
42 |
results = []
|
43 |
|
44 |
for i, word_data in enumerate(selected_words):
|
45 |
-
status.append(f"正在生成第 {i + 1}/{n} 個單字 [{word_data['word']}] 例句...")
|
46 |
word = word_data['word']
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
"
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
display_result += f"""
|
65 |
<div style="border-bottom: 1px solid #ddd; margin-bottom: 10px; padding-bottom: 5px;">
|
66 |
<p><strong>📖 單字:</strong> {word}</p>
|
67 |
-
<p><strong>🔤 音標:</strong> {
|
68 |
-
<p><strong>✍️ 例句:</strong> {
|
69 |
</div>
|
70 |
"""
|
71 |
|
72 |
status.append("✅ 完成!")
|
73 |
-
|
74 |
-
# 以HTML形式回傳美化後的結果
|
75 |
return display_result, "\n".join(status)
|
76 |
|
77 |
except Exception as e:
|
78 |
status.append(f"❌ 發生錯誤: {str(e)}")
|
79 |
return f"<p style='color:red;'>發生錯誤:{str(e)}</p>", "\n".join(status)
|
|
|
|
|
|
|
|
1 |
+
import sqlite3
|
2 |
import json
|
3 |
import random
|
4 |
import os
|
5 |
import re
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
+
# 初始化 GPT 模型
|
9 |
model_name = "EleutherAI/pythia-410m"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
|
13 |
+
# 資料夾
|
14 |
DATA_DIR = "./data"
|
15 |
+
DB_PATH = os.path.join(DATA_DIR, "sentences.db")
|
16 |
+
|
17 |
+
# 建立資料表
|
18 |
+
def init_db():
|
19 |
+
conn = sqlite3.connect(DB_PATH)
|
20 |
+
c = conn.cursor()
|
21 |
+
c.execute('''
|
22 |
+
CREATE TABLE IF NOT EXISTS sentences (
|
23 |
+
word TEXT PRIMARY KEY,
|
24 |
+
phonetic TEXT,
|
25 |
+
sentence TEXT,
|
26 |
+
created_at DATETIME DEFAULT CURRENT_TIMESTAMP
|
27 |
+
)
|
28 |
+
''')
|
29 |
+
conn.commit()
|
30 |
+
conn.close()
|
31 |
+
|
32 |
+
# 自動掃描資料夾生成選單
|
33 |
def get_sources():
|
|
|
34 |
files = os.listdir(DATA_DIR)
|
35 |
sources = [f.split(".json")[0] for f in files if f.endswith(".json")]
|
36 |
return sources
|
37 |
|
38 |
+
# 查詢句庫
|
39 |
+
def get_sentence(word):
|
40 |
+
conn = sqlite3.connect(DB_PATH)
|
41 |
+
c = conn.cursor()
|
42 |
+
c.execute('SELECT word, phonetic, sentence FROM sentences WHERE word=?', (word,))
|
43 |
+
result = c.fetchone()
|
44 |
+
conn.close()
|
45 |
+
return result
|
46 |
+
|
47 |
+
# 保存句子到 SQLite
|
48 |
+
def save_sentence(word, phonetic, sentence):
|
49 |
+
conn = sqlite3.connect(DB_PATH)
|
50 |
+
c = conn.cursor()
|
51 |
+
c.execute('''
|
52 |
+
INSERT INTO sentences (word, phonetic, sentence)
|
53 |
+
VALUES (?, ?, ?)
|
54 |
+
ON CONFLICT(word) DO UPDATE SET sentence=excluded.sentence, phonetic=excluded.phonetic
|
55 |
+
''', (word, phonetic, sentence))
|
56 |
+
conn.commit()
|
57 |
+
conn.close()
|
58 |
+
|
59 |
+
# 清理 GPT 生成句子的雜訊
|
60 |
def clean_sentence(output):
|
61 |
+
output = output.split(":")[-1].strip()
|
62 |
+
output = re.sub(r"^\d+\.\s*", "", output).strip()
|
63 |
output = re.sub(r"Write.*?beginners\.", "", output, flags=re.IGNORECASE).strip()
|
64 |
output = re.sub(r"\*\*?\d+\.*\*\*", "", output).strip()
|
65 |
if not output.endswith("."):
|
66 |
output += "."
|
67 |
return output
|
68 |
|
69 |
+
# 核心:抽單字 + 查句庫 or GPT 生成句子
|
70 |
def get_words_with_sentences(source, n):
|
|
|
71 |
status = []
|
72 |
display_result = ""
|
73 |
+
|
74 |
try:
|
75 |
+
# 讀取單字庫
|
76 |
data_path = os.path.join(DATA_DIR, f"{source}.json")
|
77 |
with open(data_path, 'r', encoding='utf-8') as f:
|
78 |
words = json.load(f)
|
79 |
|
80 |
+
# 隨機抽取 n 個單字
|
81 |
selected_words = random.sample(words, n)
|
82 |
results = []
|
83 |
|
84 |
for i, word_data in enumerate(selected_words):
|
|
|
85 |
word = word_data['word']
|
86 |
+
phonetic = word_data['phonetic']
|
87 |
+
|
88 |
+
# 查詢句庫,看是否已有例句
|
89 |
+
cached_result = get_sentence(word)
|
90 |
+
if cached_result:
|
91 |
+
sentence = cached_result[2]
|
92 |
+
status.append(f"✅ {word} 已有例句,從句庫讀取")
|
93 |
+
else:
|
94 |
+
# 沒有的話,GPT 生成句子
|
95 |
+
status.append(f"📝 正在生成第 {i + 1}/{n} 個單字 [{word}] 例句...")
|
96 |
+
prompt = f"A simple English sentence with the word '{word}':"
|
97 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
98 |
+
outputs = model.generate(**inputs, max_new_tokens=30)
|
99 |
+
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
100 |
+
|
101 |
+
# 清理生成句子
|
102 |
+
sentence = clean_sentence(sentence)
|
103 |
+
|
104 |
+
# 存入句庫
|
105 |
+
save_sentence(word, phonetic, sentence)
|
106 |
+
|
107 |
+
# 美化輸出
|
108 |
display_result += f"""
|
109 |
<div style="border-bottom: 1px solid #ddd; margin-bottom: 10px; padding-bottom: 5px;">
|
110 |
<p><strong>📖 單字:</strong> {word}</p>
|
111 |
+
<p><strong>🔤 音標:</strong> {phonetic}</p>
|
112 |
+
<p><strong>✍️ 例句:</strong> {sentence}</p>
|
113 |
</div>
|
114 |
"""
|
115 |
|
116 |
status.append("✅ 完成!")
|
|
|
|
|
117 |
return display_result, "\n".join(status)
|
118 |
|
119 |
except Exception as e:
|
120 |
status.append(f"❌ 發生錯誤: {str(e)}")
|
121 |
return f"<p style='color:red;'>發生錯誤:{str(e)}</p>", "\n".join(status)
|
122 |
+
|
123 |
+
# 啟動時自動建表
|
124 |
+
init_db()
|