Spaces:
Sleeping
Sleeping
import gradio as gr | |
import json | |
import random | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
# 模型初始化(Hugging Face Spaces會跑) | |
model_name = "mistralai/Mistral-7B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# 資料夾路徑 | |
DATA_DIR = "./data" | |
# 核心函數:抽單字+造句 | |
def get_words_with_sentences(source="common3000", n=10): | |
try: | |
# 動態讀取指定資料檔 | |
data_path = os.path.join(DATA_DIR, f"{source}.json") | |
with open(data_path, 'r', encoding='utf-8') as f: | |
words = json.load(f) | |
# 隨機抽取 | |
selected_words = random.sample(words, n) | |
results = [] | |
# 每個單字請 GPT 造句 | |
for word_data in selected_words: | |
word = word_data['word'] | |
prompt = f"Write a simple English sentence using the word '{word}' suitable for beginners." | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=30) | |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
results.append({ | |
"word": word, | |
"phonetic": word_data["phonetic"], | |
"sentence": sentence | |
}) | |
return results | |
except Exception as e: | |
return [{"error": f"發生錯誤: {str(e)}"}] | |
# Gradio 介面設定 | |
demo = gr.Interface( | |
fn=get_words_with_sentences, | |
inputs=[ | |
gr.Textbox(value="common3000", label="選擇單字庫"), | |
gr.Number(value=10, label="抽幾個單字") | |
], | |
outputs="json" | |
) | |
demo.launch() | |