Spaces:
Running
Running
import json | |
import random | |
import os | |
import re | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# 初始化模型,只執行一次,避免每次請求都重新載入 | |
model_name = "EleutherAI/pythia-410m" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
DATA_DIR = "./data" | |
def get_sources(): | |
"""掃描資料夾,回傳所有單字庫名稱""" | |
files = os.listdir(DATA_DIR) | |
sources = [f.split(".json")[0] for f in files if f.endswith(".json")] | |
return sources | |
def clean_sentence(output): | |
"""清理 GPT 生成的句子,去除雜訊""" | |
output = re.sub(r"Write.*?beginners\.", "", output, flags=re.IGNORECASE).strip() | |
output = re.sub(r"\*\*?\d+\.*\*\*", "", output).strip() | |
if not output.endswith("."): | |
output += "." | |
return output | |
def get_words_with_sentences(source, n): | |
"""抽取單字 + 生成例句,回傳結果和狀態""" | |
status = [] | |
display_result = "" | |
try: | |
# 讀取單字庫資料 | |
data_path = os.path.join(DATA_DIR, f"{source}.json") | |
with open(data_path, 'r', encoding='utf-8') as f: | |
words = json.load(f) | |
# 隨機抽取 | |
selected_words = random.sample(words, n) | |
results = [] | |
for i, word_data in enumerate(selected_words): | |
status.append(f"正在生成第 {i + 1}/{n} 個單字 [{word_data['word']}] 例句...") | |
word = word_data['word'] | |
# GPT 造句 Prompt | |
prompt = f"Use the word '{word}' in a simple English sentence suitable for beginners. Output only the sentence." | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=30) | |
sentence = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
clean_output = clean_sentence(sentence) | |
results.append({ | |
"word": word, | |
"phonetic": word_data["phonetic"], | |
"sentence": clean_output | |
}) | |
# 美化輸出文字 | |
display_result += f""" | |
<div style="border-bottom: 1px solid #ddd; margin-bottom: 10px; padding-bottom: 5px;"> | |
<p><strong>📖 單字:</strong> {word}</p> | |
<p><strong>🔤 音標:</strong> {word_data['phonetic']}</p> | |
<p><strong>✍️ 例句:</strong> {clean_output}</p> | |
</div> | |
""" | |
status.append("✅ 完成!") | |
# 以HTML形式回傳美化後的結果 | |
return display_result, "\n".join(status) | |
except Exception as e: | |
status.append(f"❌ 發生錯誤: {str(e)}") | |
return f"<p style='color:red;'>發生錯誤:{str(e)}</p>", "\n".join(status) | |