Spaces:
Sleeping
Sleeping
File size: 6,570 Bytes
f6bff5d 877774e 6180cc7 d0c90a3 f0b8f19 6180cc7 0ca3860 6180cc7 0ca3860 6180cc7 ebb3019 6180cc7 13a1b41 6180cc7 13a1b41 6180cc7 ebb3019 792e10f d0c90a3 792e10f 877774e c63812d 877774e 792e10f ebb3019 dd25581 b2dbf5f dd25581 b2dbf5f dd25581 d0c90a3 dd25581 af8e5d3 d0c90a3 dd25581 d0c90a3 53091ac d0c90a3 dd25581 53091ac af8e5d3 d0c90a3 53091ac af8e5d3 53091ac 82b5a0a dd25581 53091ac dd25581 d0c90a3 82b5a0a 53091ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import random
from vocab import get_sources, get_words_from_source
from sentences import generate_sentences
from ai_sentence import MODEL_LIST
from quiz import generate_fill_in_blank_exam, check_exam, render_exam_interface
def process_sentence(mode, word, source, num, use_ai, model_name):
try:
if mode == '查詢單字':
if not word:
return "<p style='color:red;'>❌ 請輸入單字</p>", "未輸入單字"
words = [word.strip()]
elif mode == '隨機抽單字':
num = int(num)
if num <= 0:
return "<p style='color:red;'>❌ 抽取數量須大於0</p>", "數量錯誤"
words_data = get_words_from_source(source)
words = [w['word'] for w in words_data]
words = random.sample(words, num)
else:
return "<p style='color:red;'>❌ 模式錯誤</p>", "模式選擇異常"
result_display, status_log = generate_sentences(words, source, use_ai, model_name)
return result_display, status_log
except Exception as e:
return f"<p style='color:red;'>❌ 發生錯誤:{str(e)}</p>", f"錯誤:{str(e)}"
def project_description():
return """
# 📖 VocabLine 單字例句工具
支援單字例句查詢,AI 自動生成句子。適合作為 LINE 單字推播、英文學習輔助工具。
## 🔍 核心功能
- 查詢單字 → 獲取例句
- 抽取單字 → 批量獲取例句
- 可選 AI 生成句子(模型:GPT2 / Pythia)
- 英文小考 → 單字填空選擇題,自動批改計分
## 🧑💻 技術架構
- Gradio Blocks + Transformers (Hugging Face)
- SQLite 句庫管理
- 支援多單字庫擴展
## 📚 資料來源
- 常用 3000 單字表
- 英文例句資料庫 (Tatoeba)
## 👨💻 開發資訊
- 開發者:余彦志 (大宇 ian)
- 信箱:[email protected]
- GitHub:[https://github.com/dayuian](https://github.com/dayuian)
"""
with gr.Blocks(css="""
#card-group { padding: 15px; border-radius: 12px; background-color: rgba(255, 255, 255, 0.05); box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); margin-bottom: 15px; }
.gradio-container { max-width: 800px; margin: auto; }
""") as demo:
gr.Markdown(project_description())
with gr.Tab("單字查詢/生成例句"):
with gr.Group():
with gr.Row():
mode_radio = gr.Radio(
["查詢單字", "隨機抽單字"],
label="選擇模式",
value="查詢單字",
interactive=True
)
word_input = gr.Textbox(label="輸入單字", visible=True)
num_input = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="抽取單字數量", visible=False)
source_dropdown = gr.Dropdown(
choices=get_sources(),
value="common3000",
label="選擇單字庫"
)
with gr.Group(elem_id="card-group"):
use_ai_checkbox = gr.Checkbox(label="使用 AI 生成句子(較慢,約 30 秒)", elem_id="use-ai-checkbox")
with gr.Row():
model_dropdown = gr.Dropdown(
choices=MODEL_LIST,
value="gpt2",
label="選擇 AI 模型",
visible=False
)
gr.Markdown("🔷 **建議使用 GPT2(表現較佳),Pythia-410m 很爛慎選!**", visible=False)
ai_warning = gr.Textbox(
value="⚠️ 使用 AI 生成句子為功能測試,每一個單字的生成過程可能需要 30 秒以上,請耐心等待。",
visible=False,
interactive=False,
label=""
)
result_output = gr.HTML(label="結果")
status_output = gr.Textbox(label="處理狀態", interactive=False)
with gr.Row():
generate_button = gr.Button("✨ 生成句子", elem_id="generate-button")
def switch_mode(mode):
return gr.update(visible=(mode == '查詢單字')), gr.update(visible=(mode == '隨機抽單字'))
mode_radio.change(
switch_mode,
inputs=[mode_radio],
outputs=[word_input, num_input]
)
generate_button.click(
process_sentence,
inputs=[mode_radio, word_input, source_dropdown, num_input, use_ai_checkbox, model_dropdown],
outputs=[result_output, status_output]
)
with gr.Tab("英文小考"):
model_note = gr.Markdown(visible=True)
quiz_source_dropdown = gr.Dropdown(
choices=get_sources(),
value="common3000",
label="選擇單字庫"
)
quiz_num_slider = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="題目數量")
quiz_model_dropdown = gr.Dropdown(
choices=MODEL_LIST,
value="gpt2",
label="選擇 AI 模型"
)
quiz_generate_button = gr.Button("📄 生成試卷")
quiz_submit_button = gr.Button("✅ 提交試卷")
quiz_score_display = gr.HTML()
quiz_questions_state = gr.State([])
radios = [gr.Radio(choices=[], label=f"第 {i + 1} 題", visible=False, interactive=True) for i in range(5)]
def update_model_note(model):
return f"本功能目前使用 **{model}** 作為語言模型生成題目。"
quiz_model_dropdown.change(update_model_note, inputs=[quiz_model_dropdown], outputs=[model_note])
def display_exam(source, num, model):
questions = generate_fill_in_blank_exam(source, num)
quiz_questions_state.value = questions
updates = []
for i, q in enumerate(questions):
updates.append(gr.update(choices=q["options"], label=f"第 {i + 1} 題:{q['sentence']}", visible=True))
for i in range(len(questions), 5):
updates.append(gr.update(visible=False))
return updates
def submit_exam(*user_answers):
questions = quiz_questions_state.value
score_html = check_exam(user_answers[:len(questions)], questions)
return score_html
quiz_generate_button.click(display_exam, inputs=[quiz_source_dropdown, quiz_num_slider, quiz_model_dropdown], outputs=radios)
quiz_submit_button.click(submit_exam, inputs=radios, outputs=quiz_score_display)
demo.launch()
|