Spaces:
Runtime error
Runtime error
File size: 7,472 Bytes
045d7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import joblib
import time
import plotly.graph_objects as go
import streamlit as st
import pandas as pd
import numpy as np
FEATS = [
'srcip',
'sport',
'dstip',
'dsport',
'proto',
#'state', I dropped this one when I trained the model
'dur',
'sbytes',
'dbytes',
'sttl',
'dttl',
'sloss',
'dloss',
'service',
'Sload',
'Dload',
'Spkts',
'Dpkts',
'swin',
'dwin',
'stcpb',
'dtcpb',
'smeansz',
'dmeansz',
'trans_depth',
'res_bdy_len',
'Sjit',
'Djit',
'Stime',
'Ltime',
'Sintpkt',
'Dintpkt',
'tcprtt',
'synack',
'ackdat',
'is_sm_ips_ports',
'ct_state_ttl',
'ct_flw_http_mthd',
'is_ftp_login',
'ct_ftp_cmd',
'ct_srv_src',
'ct_srv_dst',
'ct_dst_ltm',
'ct_src_ltm',
'ct_src_dport_ltm',
'ct_dst_sport_ltm',
'ct_dst_src_ltm',
]
COLORS = [
'aliceblue','aqua','aquamarine','azure',
'bisque','black','blanchedalmond','blue',
'blueviolet','brown','burlywood','cadetblue',
'chartreuse','chocolate','coral','cornflowerblue',
'cornsilk','crimson','cyan','darkblue','darkcyan',
'darkgoldenrod','darkgray','darkgreen',
'darkkhaki','darkmagenta','darkolivegreen','darkorange',
'darkorchid','darkred','darksalmon','darkseagreen',
'darkslateblue','darkslategray',
'darkturquoise','darkviolet','deeppink','deepskyblue',
'dimgray','dodgerblue',
'forestgreen','fuchsia','gainsboro',
'gold','goldenrod','gray','green',
'greenyellow','honeydew','hotpink','indianred','indigo',
'ivory','khaki','lavender','lavenderblush','lawngreen',
'lemonchiffon','lightblue','lightcoral','lightcyan',
'lightgoldenrodyellow','lightgray',
'lightgreen','lightpink','lightsalmon','lightseagreen',
'lightskyblue','lightslategray',
'lightsteelblue','lightyellow','lime','limegreen',
'linen','magenta','maroon','mediumaquamarine',
'mediumblue','mediumorchid','mediumpurple',
'mediumseagreen','mediumslateblue','mediumspringgreen',
'mediumturquoise','mediumvioletred','midnightblue',
'mintcream','mistyrose','moccasin','navy',
'oldlace','olive','olivedrab','orange','orangered',
'orchid','palegoldenrod','palegreen','paleturquoise',
'palevioletred','papayawhip','peachpuff','peru','pink',
'plum','powderblue','purple','red','rosybrown',
'royalblue','saddlebrown','salmon','sandybrown',
'seagreen','seashell','sienna','silver','skyblue',
'slateblue','slategray','slategrey','snow','springgreen',
'steelblue','tan','teal','thistle','tomato','turquoise',
'violet','wheat','yellow','yellowgreen'
]
def build_parents(tree, visit_order, node_id2plot_id):
parents = [None]
parent_plot_ids = [None]
directions = [None]
for i in visit_order[1:]:
parent = tree[tree['right']==i].index
if parent.empty:
p = tree[tree['left']==i].index[0]
parent_plot_ids.append(str(node_id2plot_id[p]))
parents.append(p)
directions.append('l')
else:
parent_plot_ids.append(str(node_id2plot_id[parent[0]]))
parents.append(parent[0])
directions.append('r')
return parents, parent_plot_ids, directions
def build_labels_colors(tree, visit_order, parents, parent_plot_ids, directions):
labels = ['Histogram Gradient-Boosted Decision Tree']
colors = ['white']
for i, parent, parent_plot_id, direction in zip(
visit_order,
parents,
parent_plot_ids,
directions
):
# skip the first one (the root)
if i == 0:
continue
node = tree.loc[i]
feat = FEATS[int(tree.loc[int(parent), 'feature_idx'])]
thresh = tree.loc[int(parent), 'num_threshold']
if direction == 'l':
labels.append(f"[{parent_plot_id}.L] {feat} <= {thresh}")
else:
labels.append(f"[{parent_plot_id}.R] {feat} > {thresh}")
# colors
offset = FEATS.index(feat)
colors.append(COLORS[offset])
return labels, colors
def build_plot(tree):
#https://stackoverflow.com/questions/64393535/python-plotly-treemap-ids-format-and-how-to-display-multiple-duplicated-labels-i
# if you use `ids`, then `parents` has to be in terms of `ids`
visit_order = breadth_first_traverse(tree)
node_id2plot_id = {node:i for i, node in enumerate(visit_order)}
parents, parent_plot_ids, directions = build_parents(tree, visit_order, node_id2plot_id)
labels, colors = build_labels_colors(tree, visit_order, parents, parent_plot_ids, directions)
# this should just be ['0', '1', '2', . . .]
plot_ids = [str(node_id2plot_id[x]) for x in visit_order]
return go.Treemap(
values=tree['count'].to_numpy(),
labels=labels,
ids=plot_ids,
parents=parent_plot_ids,
marker_colors=colors,
)
def breadth_first_traverse(tree):
"""
https://www.101computing.net/breadth-first-traversal-of-a-binary-tree/
Iterative version makes more sense since I have the whole tree in a table
instead of just nodes and pointers
"""
q = [0]
visited_nodes = []
while len(q) != 0:
cur = q.pop(0)
visited_nodes.append(cur)
if tree.loc[cur, 'left'] != 0:
q.append(tree.loc[cur, 'left'])
if tree.loc[cur, 'right'] != 0:
q.append(tree.loc[cur, 'right'])
return visited_nodes
def main():
# load the data
hgb = joblib.load('hgb_classifier.joblib')
trees = [pd.DataFrame(x[0].nodes) for x in hgb._predictors]
# make the plots
graph_objs = [build_plot(tree) for tree in trees]
figures = [go.Figure(graph_obj) for graph_obj in graph_objs]
frames = [go.Frame(data=graph_obj) for graph_obj in graph_objs]
# show them with streamlit
# this puts them all on the screen at once
# like each new one shows up below the previous one
# instead of replacing the previous one
#for fig in figures:
# st.plotly_chart(fig)
# time.sleep(1)
# This works the way I want
# but the plot is tiny
# also it recalcualtes all of the plots
# every time the slider value changes
#
# I tried to cache the plots but build_plot() takes
# a DataFrame which is mutable and therefore unhashable I guess
# so it won't let me cache that function
# I could pack the dataframe bytes to smuggle them past that check
# but whatever
idx = st.slider(
label='which step to show',
min_value=0,
max_value=len(figures)-1,
value=0,
step=1
)
st.plotly_chart(figures[idx])
st.markdown(f'## Tree {idx}')
st.dataframe(trees[idx])
# Maybe just show a Plotly animated chart
# https://plotly.com/python/animations/#using-a-slider-and-buttons
# They don't really document the animation stuff on their website
# but it's in here
# https://raw.githubusercontent.com/plotly/plotly.js/master/dist/plot-schema.json
# I guess it's only in the JS docs and hasn't made it to the Python docs yet
# https://plotly.com/javascript/animations/
# trying to find stuff here instead
# https://plotly.com/python-api-reference/generated/plotly.graph_objects.layout.updatemenu.html?highlight=updatemenu
# this one finally set the speed
# no mention of how they figured this out but thank goodness I found it
# https://towardsdatascience.com/basic-animation-with-matplotlib-and-plotly-5eef4ad6c5aa
ani_fig = go.Figure(
data=graph_objs[0],
frames=frames,
layout=go.Layout(
updatemenus=[{
'type':'buttons',
'buttons':[{
'label':'Play',
'method': 'animate',
'args':[None, {
'frame': {'duration':5000},
'transition': {'duration': 2500}
}]
}]
}]
)
)
st.plotly_chart(ani_fig)
if __name__=='__main__':
main()
|