Spaces:
Runtime error
Runtime error
Upload hy3dgen/shapegen/models/hunyuan3ddit.py with huggingface_hub
Browse files
hy3dgen/shapegen/models/hunyuan3ddit.py
ADDED
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
+
# and Other Licenses of the Third-Party Components therein:
|
3 |
+
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
+
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
+
|
6 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
+
# The below software and/or models in this distribution may have been
|
8 |
+
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
+
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
+
|
11 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
+
# except for the third-party components listed below.
|
13 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
+
# in the repsective licenses of these third-party components.
|
15 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
+
# components and must ensure that the usage of the third party components adheres to
|
17 |
+
# all relevant laws and regulations.
|
18 |
+
|
19 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
+
# their software and algorithms, including trained model weights, parameters (including
|
21 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
+
|
25 |
+
import math
|
26 |
+
from dataclasses import dataclass
|
27 |
+
from typing import List, Tuple, Optional
|
28 |
+
|
29 |
+
import torch
|
30 |
+
from einops import rearrange
|
31 |
+
from torch import Tensor, nn
|
32 |
+
|
33 |
+
|
34 |
+
def attention(q: Tensor, k: Tensor, v: Tensor, **kwargs) -> Tensor:
|
35 |
+
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
|
36 |
+
x = rearrange(x, "B H L D -> B L (H D)")
|
37 |
+
return x
|
38 |
+
|
39 |
+
|
40 |
+
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
41 |
+
"""
|
42 |
+
Create sinusoidal timestep embeddings.
|
43 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
44 |
+
These may be fractional.
|
45 |
+
:param dim: the dimension of the output.
|
46 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
47 |
+
:return: an (N, D) Tensor of positional embeddings.
|
48 |
+
"""
|
49 |
+
t = time_factor * t
|
50 |
+
half = dim // 2
|
51 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
52 |
+
t.device
|
53 |
+
)
|
54 |
+
|
55 |
+
args = t[:, None].float() * freqs[None]
|
56 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
57 |
+
if dim % 2:
|
58 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
59 |
+
if torch.is_floating_point(t):
|
60 |
+
embedding = embedding.to(t)
|
61 |
+
return embedding
|
62 |
+
|
63 |
+
|
64 |
+
class MLPEmbedder(nn.Module):
|
65 |
+
def __init__(self, in_dim: int, hidden_dim: int):
|
66 |
+
super().__init__()
|
67 |
+
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
68 |
+
self.silu = nn.SiLU()
|
69 |
+
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
70 |
+
|
71 |
+
def forward(self, x: Tensor) -> Tensor:
|
72 |
+
return self.out_layer(self.silu(self.in_layer(x)))
|
73 |
+
|
74 |
+
|
75 |
+
class RMSNorm(torch.nn.Module):
|
76 |
+
def __init__(self, dim: int):
|
77 |
+
super().__init__()
|
78 |
+
self.scale = nn.Parameter(torch.ones(dim))
|
79 |
+
|
80 |
+
def forward(self, x: Tensor):
|
81 |
+
x_dtype = x.dtype
|
82 |
+
x = x.float()
|
83 |
+
rrms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + 1e-6)
|
84 |
+
return (x * rrms).to(dtype=x_dtype) * self.scale
|
85 |
+
|
86 |
+
|
87 |
+
class QKNorm(torch.nn.Module):
|
88 |
+
def __init__(self, dim: int):
|
89 |
+
super().__init__()
|
90 |
+
self.query_norm = RMSNorm(dim)
|
91 |
+
self.key_norm = RMSNorm(dim)
|
92 |
+
|
93 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tuple[Tensor, Tensor]:
|
94 |
+
q = self.query_norm(q)
|
95 |
+
k = self.key_norm(k)
|
96 |
+
return q.to(v), k.to(v)
|
97 |
+
|
98 |
+
|
99 |
+
class SelfAttention(nn.Module):
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
dim: int,
|
103 |
+
num_heads: int = 8,
|
104 |
+
qkv_bias: bool = False,
|
105 |
+
):
|
106 |
+
super().__init__()
|
107 |
+
self.num_heads = num_heads
|
108 |
+
head_dim = dim // num_heads
|
109 |
+
|
110 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
111 |
+
self.norm = QKNorm(head_dim)
|
112 |
+
self.proj = nn.Linear(dim, dim)
|
113 |
+
|
114 |
+
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
115 |
+
qkv = self.qkv(x)
|
116 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
117 |
+
q, k = self.norm(q, k, v)
|
118 |
+
x = attention(q, k, v, pe=pe)
|
119 |
+
x = self.proj(x)
|
120 |
+
return x
|
121 |
+
|
122 |
+
|
123 |
+
@dataclass
|
124 |
+
class ModulationOut:
|
125 |
+
shift: Tensor
|
126 |
+
scale: Tensor
|
127 |
+
gate: Tensor
|
128 |
+
|
129 |
+
|
130 |
+
class Modulation(nn.Module):
|
131 |
+
def __init__(self, dim: int, double: bool):
|
132 |
+
super().__init__()
|
133 |
+
self.is_double = double
|
134 |
+
self.multiplier = 6 if double else 3
|
135 |
+
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
136 |
+
|
137 |
+
def forward(self, vec: Tensor) -> Tuple[ModulationOut, Optional[ModulationOut]]:
|
138 |
+
out = self.lin(nn.functional.silu(vec))[:, None, :]
|
139 |
+
out = out.chunk(self.multiplier, dim=-1)
|
140 |
+
|
141 |
+
return (
|
142 |
+
ModulationOut(*out[:3]),
|
143 |
+
ModulationOut(*out[3:]) if self.is_double else None,
|
144 |
+
)
|
145 |
+
|
146 |
+
|
147 |
+
class DoubleStreamBlock(nn.Module):
|
148 |
+
def __init__(
|
149 |
+
self,
|
150 |
+
hidden_size: int,
|
151 |
+
num_heads: int,
|
152 |
+
mlp_ratio: float,
|
153 |
+
qkv_bias: bool = False,
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
157 |
+
self.num_heads = num_heads
|
158 |
+
self.hidden_size = hidden_size
|
159 |
+
self.img_mod = Modulation(hidden_size, double=True)
|
160 |
+
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
161 |
+
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
162 |
+
|
163 |
+
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
164 |
+
self.img_mlp = nn.Sequential(
|
165 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
166 |
+
nn.GELU(approximate="tanh"),
|
167 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
168 |
+
)
|
169 |
+
|
170 |
+
self.txt_mod = Modulation(hidden_size, double=True)
|
171 |
+
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
172 |
+
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
173 |
+
|
174 |
+
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
175 |
+
self.txt_mlp = nn.Sequential(
|
176 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
177 |
+
nn.GELU(approximate="tanh"),
|
178 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
179 |
+
)
|
180 |
+
|
181 |
+
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> Tuple[Tensor, Tensor]:
|
182 |
+
img_mod1, img_mod2 = self.img_mod(vec)
|
183 |
+
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
184 |
+
|
185 |
+
img_modulated = self.img_norm1(img)
|
186 |
+
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
187 |
+
img_qkv = self.img_attn.qkv(img_modulated)
|
188 |
+
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
189 |
+
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
190 |
+
|
191 |
+
txt_modulated = self.txt_norm1(txt)
|
192 |
+
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
193 |
+
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
194 |
+
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
195 |
+
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
196 |
+
|
197 |
+
q = torch.cat((txt_q, img_q), dim=2)
|
198 |
+
k = torch.cat((txt_k, img_k), dim=2)
|
199 |
+
v = torch.cat((txt_v, img_v), dim=2)
|
200 |
+
|
201 |
+
attn = attention(q, k, v, pe=pe)
|
202 |
+
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
203 |
+
|
204 |
+
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
205 |
+
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
206 |
+
|
207 |
+
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
208 |
+
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
209 |
+
return img, txt
|
210 |
+
|
211 |
+
|
212 |
+
class SingleStreamBlock(nn.Module):
|
213 |
+
"""
|
214 |
+
A DiT block with parallel linear layers as described in
|
215 |
+
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
216 |
+
"""
|
217 |
+
|
218 |
+
def __init__(
|
219 |
+
self,
|
220 |
+
hidden_size: int,
|
221 |
+
num_heads: int,
|
222 |
+
mlp_ratio: float = 4.0,
|
223 |
+
qk_scale: Optional[float] = None,
|
224 |
+
):
|
225 |
+
super().__init__()
|
226 |
+
|
227 |
+
self.hidden_dim = hidden_size
|
228 |
+
self.num_heads = num_heads
|
229 |
+
head_dim = hidden_size // num_heads
|
230 |
+
self.scale = qk_scale or head_dim ** -0.5
|
231 |
+
|
232 |
+
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
233 |
+
# qkv and mlp_in
|
234 |
+
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
235 |
+
# proj and mlp_out
|
236 |
+
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
237 |
+
|
238 |
+
self.norm = QKNorm(head_dim)
|
239 |
+
|
240 |
+
self.hidden_size = hidden_size
|
241 |
+
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
242 |
+
|
243 |
+
self.mlp_act = nn.GELU(approximate="tanh")
|
244 |
+
self.modulation = Modulation(hidden_size, double=False)
|
245 |
+
|
246 |
+
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
247 |
+
mod, _ = self.modulation(vec)
|
248 |
+
|
249 |
+
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
|
250 |
+
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
251 |
+
|
252 |
+
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
|
253 |
+
q, k = self.norm(q, k, v)
|
254 |
+
|
255 |
+
# compute attention
|
256 |
+
attn = attention(q, k, v, pe=pe)
|
257 |
+
# compute activation in mlp stream, cat again and run second linear layer
|
258 |
+
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
259 |
+
return x + mod.gate * output
|
260 |
+
|
261 |
+
|
262 |
+
class LastLayer(nn.Module):
|
263 |
+
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
264 |
+
super().__init__()
|
265 |
+
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
266 |
+
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
267 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
268 |
+
|
269 |
+
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
270 |
+
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
271 |
+
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
272 |
+
x = self.linear(x)
|
273 |
+
return x
|
274 |
+
|
275 |
+
|
276 |
+
class Hunyuan3DDiT(nn.Module):
|
277 |
+
def __init__(
|
278 |
+
self,
|
279 |
+
in_channels: int = 64,
|
280 |
+
context_in_dim: int = 1536,
|
281 |
+
hidden_size: int = 1024,
|
282 |
+
mlp_ratio: float = 4.0,
|
283 |
+
num_heads: int = 16,
|
284 |
+
depth: int = 16,
|
285 |
+
depth_single_blocks: int = 32,
|
286 |
+
axes_dim: List[int] = [64],
|
287 |
+
theta: int = 10_000,
|
288 |
+
qkv_bias: bool = True,
|
289 |
+
time_factor: float = 1000,
|
290 |
+
ckpt_path: Optional[str] = None,
|
291 |
+
**kwargs,
|
292 |
+
):
|
293 |
+
super().__init__()
|
294 |
+
self.in_channels = in_channels
|
295 |
+
self.context_in_dim = context_in_dim
|
296 |
+
self.hidden_size = hidden_size
|
297 |
+
self.mlp_ratio = mlp_ratio
|
298 |
+
self.num_heads = num_heads
|
299 |
+
self.depth = depth
|
300 |
+
self.depth_single_blocks = depth_single_blocks
|
301 |
+
self.axes_dim = axes_dim
|
302 |
+
self.theta = theta
|
303 |
+
self.qkv_bias = qkv_bias
|
304 |
+
self.time_factor = time_factor
|
305 |
+
self.out_channels = self.in_channels
|
306 |
+
|
307 |
+
if hidden_size % num_heads != 0:
|
308 |
+
raise ValueError(
|
309 |
+
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}"
|
310 |
+
)
|
311 |
+
pe_dim = hidden_size // num_heads
|
312 |
+
if sum(axes_dim) != pe_dim:
|
313 |
+
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}")
|
314 |
+
self.hidden_size = hidden_size
|
315 |
+
self.num_heads = num_heads
|
316 |
+
self.latent_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
317 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
318 |
+
self.cond_in = nn.Linear(context_in_dim, self.hidden_size)
|
319 |
+
|
320 |
+
self.double_blocks = nn.ModuleList(
|
321 |
+
[
|
322 |
+
DoubleStreamBlock(
|
323 |
+
self.hidden_size,
|
324 |
+
self.num_heads,
|
325 |
+
mlp_ratio=mlp_ratio,
|
326 |
+
qkv_bias=qkv_bias,
|
327 |
+
)
|
328 |
+
for _ in range(depth)
|
329 |
+
]
|
330 |
+
)
|
331 |
+
|
332 |
+
self.single_blocks = nn.ModuleList(
|
333 |
+
[
|
334 |
+
SingleStreamBlock(
|
335 |
+
self.hidden_size,
|
336 |
+
self.num_heads,
|
337 |
+
mlp_ratio=mlp_ratio,
|
338 |
+
)
|
339 |
+
for _ in range(depth_single_blocks)
|
340 |
+
]
|
341 |
+
)
|
342 |
+
|
343 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
344 |
+
|
345 |
+
if ckpt_path is not None:
|
346 |
+
print('restored denoiser ckpt', ckpt_path)
|
347 |
+
|
348 |
+
ckpt = torch.load(ckpt_path, map_location="cpu")
|
349 |
+
if 'state_dict' not in ckpt:
|
350 |
+
# deepspeed ckpt
|
351 |
+
state_dict = {}
|
352 |
+
for k in ckpt.keys():
|
353 |
+
new_k = k.replace('_forward_module.', '')
|
354 |
+
state_dict[new_k] = ckpt[k]
|
355 |
+
else:
|
356 |
+
state_dict = ckpt["state_dict"]
|
357 |
+
|
358 |
+
final_state_dict = {}
|
359 |
+
for k, v in state_dict.items():
|
360 |
+
if k.startswith('model.'):
|
361 |
+
final_state_dict[k.replace('model.', '')] = v
|
362 |
+
else:
|
363 |
+
final_state_dict[k] = v
|
364 |
+
missing, unexpected = self.load_state_dict(final_state_dict, strict=False)
|
365 |
+
print('unexpected keys:', unexpected)
|
366 |
+
print('missing keys:', missing)
|
367 |
+
|
368 |
+
def forward(
|
369 |
+
self,
|
370 |
+
x,
|
371 |
+
t,
|
372 |
+
contexts,
|
373 |
+
**kwargs,
|
374 |
+
) -> Tensor:
|
375 |
+
cond = contexts['main']
|
376 |
+
latent = self.latent_in(x)
|
377 |
+
vec = self.time_in(timestep_embedding(t, 256, self.time_factor).to(dtype=latent.dtype))
|
378 |
+
cond = self.cond_in(cond)
|
379 |
+
pe = None
|
380 |
+
|
381 |
+
for block in self.double_blocks:
|
382 |
+
latent, cond = block(img=latent, txt=cond, vec=vec, pe=pe)
|
383 |
+
|
384 |
+
latent = torch.cat((cond, latent), 1)
|
385 |
+
for block in self.single_blocks:
|
386 |
+
latent = block(latent, vec=vec, pe=pe)
|
387 |
+
|
388 |
+
latent = latent[:, cond.shape[1]:, ...]
|
389 |
+
latent = self.final_layer(latent, vec)
|
390 |
+
return latent
|