Spaces:
Runtime error
Runtime error
Upload hy3dgen/texgen/hunyuanpaint/unet/modules.py with huggingface_hub
Browse files
hy3dgen/texgen/hunyuanpaint/unet/modules.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
+
# and Other Licenses of the Third-Party Components therein:
|
3 |
+
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
+
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
+
|
6 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
+
# The below software and/or models in this distribution may have been
|
8 |
+
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
+
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
+
|
11 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
+
# except for the third-party components listed below.
|
13 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
+
# in the repsective licenses of these third-party components.
|
15 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
+
# components and must ensure that the usage of the third party components adheres to
|
17 |
+
# all relevant laws and regulations.
|
18 |
+
|
19 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
+
# their software and algorithms, including trained model weights, parameters (including
|
21 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
+
|
25 |
+
|
26 |
+
import copy
|
27 |
+
import json
|
28 |
+
import os
|
29 |
+
from typing import Any, Dict, Optional
|
30 |
+
|
31 |
+
import torch
|
32 |
+
import torch.nn as nn
|
33 |
+
from diffusers.models import UNet2DConditionModel
|
34 |
+
from diffusers.models.attention_processor import Attention
|
35 |
+
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock
|
36 |
+
from einops import rearrange
|
37 |
+
|
38 |
+
|
39 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
40 |
+
# "feed_forward_chunk_size" can be used to save memory
|
41 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
42 |
+
raise ValueError(
|
43 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
44 |
+
)
|
45 |
+
|
46 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
47 |
+
ff_output = torch.cat(
|
48 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
49 |
+
dim=chunk_dim,
|
50 |
+
)
|
51 |
+
return ff_output
|
52 |
+
|
53 |
+
|
54 |
+
class Basic2p5DTransformerBlock(torch.nn.Module):
|
55 |
+
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None:
|
56 |
+
super().__init__()
|
57 |
+
self.transformer = transformer
|
58 |
+
self.layer_name = layer_name
|
59 |
+
self.use_ma = use_ma
|
60 |
+
self.use_ra = use_ra
|
61 |
+
|
62 |
+
# multiview attn
|
63 |
+
if self.use_ma:
|
64 |
+
self.attn_multiview = Attention(
|
65 |
+
query_dim=self.dim,
|
66 |
+
heads=self.num_attention_heads,
|
67 |
+
dim_head=self.attention_head_dim,
|
68 |
+
dropout=self.dropout,
|
69 |
+
bias=self.attention_bias,
|
70 |
+
cross_attention_dim=None,
|
71 |
+
upcast_attention=self.attn1.upcast_attention,
|
72 |
+
out_bias=True,
|
73 |
+
)
|
74 |
+
|
75 |
+
# ref attn
|
76 |
+
if self.use_ra:
|
77 |
+
self.attn_refview = Attention(
|
78 |
+
query_dim=self.dim,
|
79 |
+
heads=self.num_attention_heads,
|
80 |
+
dim_head=self.attention_head_dim,
|
81 |
+
dropout=self.dropout,
|
82 |
+
bias=self.attention_bias,
|
83 |
+
cross_attention_dim=None,
|
84 |
+
upcast_attention=self.attn1.upcast_attention,
|
85 |
+
out_bias=True,
|
86 |
+
)
|
87 |
+
|
88 |
+
def __getattr__(self, name: str):
|
89 |
+
try:
|
90 |
+
return super().__getattr__(name)
|
91 |
+
except AttributeError:
|
92 |
+
return getattr(self.transformer, name)
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self,
|
96 |
+
hidden_states: torch.Tensor,
|
97 |
+
attention_mask: Optional[torch.Tensor] = None,
|
98 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
99 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
100 |
+
timestep: Optional[torch.LongTensor] = None,
|
101 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
102 |
+
class_labels: Optional[torch.LongTensor] = None,
|
103 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
104 |
+
) -> torch.Tensor:
|
105 |
+
|
106 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
107 |
+
# 0. Self-Attention
|
108 |
+
batch_size = hidden_states.shape[0]
|
109 |
+
|
110 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
111 |
+
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1)
|
112 |
+
mode = cross_attention_kwargs.pop('mode', None)
|
113 |
+
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0)
|
114 |
+
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0)
|
115 |
+
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None)
|
116 |
+
|
117 |
+
if self.norm_type == "ada_norm":
|
118 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
119 |
+
elif self.norm_type == "ada_norm_zero":
|
120 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
121 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
122 |
+
)
|
123 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
124 |
+
norm_hidden_states = self.norm1(hidden_states)
|
125 |
+
elif self.norm_type == "ada_norm_continuous":
|
126 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
127 |
+
elif self.norm_type == "ada_norm_single":
|
128 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
129 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
130 |
+
).chunk(6, dim=1)
|
131 |
+
norm_hidden_states = self.norm1(hidden_states)
|
132 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
133 |
+
else:
|
134 |
+
raise ValueError("Incorrect norm used")
|
135 |
+
|
136 |
+
if self.pos_embed is not None:
|
137 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
138 |
+
|
139 |
+
# 1. Prepare GLIGEN inputs
|
140 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
141 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
142 |
+
|
143 |
+
attn_output = self.attn1(
|
144 |
+
norm_hidden_states,
|
145 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
146 |
+
attention_mask=attention_mask,
|
147 |
+
**cross_attention_kwargs,
|
148 |
+
)
|
149 |
+
|
150 |
+
if self.norm_type == "ada_norm_zero":
|
151 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
152 |
+
elif self.norm_type == "ada_norm_single":
|
153 |
+
attn_output = gate_msa * attn_output
|
154 |
+
|
155 |
+
hidden_states = attn_output + hidden_states
|
156 |
+
if hidden_states.ndim == 4:
|
157 |
+
hidden_states = hidden_states.squeeze(1)
|
158 |
+
|
159 |
+
# 1.2 Reference Attention
|
160 |
+
if 'w' in mode:
|
161 |
+
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c',
|
162 |
+
n=num_in_batch) # B, (N L), C
|
163 |
+
|
164 |
+
if 'r' in mode and self.use_ra:
|
165 |
+
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1,
|
166 |
+
1) # B N L C
|
167 |
+
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c')
|
168 |
+
|
169 |
+
attn_output = self.attn_refview(
|
170 |
+
norm_hidden_states,
|
171 |
+
encoder_hidden_states=condition_embed,
|
172 |
+
attention_mask=None,
|
173 |
+
**cross_attention_kwargs
|
174 |
+
)
|
175 |
+
ref_scale_timing = ref_scale
|
176 |
+
if isinstance(ref_scale, torch.Tensor):
|
177 |
+
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1)
|
178 |
+
for _ in range(attn_output.ndim - 1):
|
179 |
+
ref_scale_timing = ref_scale_timing.unsqueeze(-1)
|
180 |
+
hidden_states = ref_scale_timing * attn_output + hidden_states
|
181 |
+
if hidden_states.ndim == 4:
|
182 |
+
hidden_states = hidden_states.squeeze(1)
|
183 |
+
|
184 |
+
# 1.3 Multiview Attention
|
185 |
+
if num_in_batch > 1 and self.use_ma:
|
186 |
+
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch)
|
187 |
+
|
188 |
+
attn_output = self.attn_multiview(
|
189 |
+
multivew_hidden_states,
|
190 |
+
encoder_hidden_states=multivew_hidden_states,
|
191 |
+
**cross_attention_kwargs
|
192 |
+
)
|
193 |
+
|
194 |
+
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch)
|
195 |
+
|
196 |
+
hidden_states = mva_scale * attn_output + hidden_states
|
197 |
+
if hidden_states.ndim == 4:
|
198 |
+
hidden_states = hidden_states.squeeze(1)
|
199 |
+
|
200 |
+
# 1.2 GLIGEN Control
|
201 |
+
if gligen_kwargs is not None:
|
202 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
203 |
+
|
204 |
+
# 3. Cross-Attention
|
205 |
+
if self.attn2 is not None:
|
206 |
+
if self.norm_type == "ada_norm":
|
207 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
208 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
209 |
+
norm_hidden_states = self.norm2(hidden_states)
|
210 |
+
elif self.norm_type == "ada_norm_single":
|
211 |
+
# For PixArt norm2 isn't applied here:
|
212 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
213 |
+
norm_hidden_states = hidden_states
|
214 |
+
elif self.norm_type == "ada_norm_continuous":
|
215 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
216 |
+
else:
|
217 |
+
raise ValueError("Incorrect norm")
|
218 |
+
|
219 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
220 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
221 |
+
|
222 |
+
attn_output = self.attn2(
|
223 |
+
norm_hidden_states,
|
224 |
+
encoder_hidden_states=encoder_hidden_states,
|
225 |
+
attention_mask=encoder_attention_mask,
|
226 |
+
**cross_attention_kwargs,
|
227 |
+
)
|
228 |
+
|
229 |
+
hidden_states = attn_output + hidden_states
|
230 |
+
|
231 |
+
# 4. Feed-forward
|
232 |
+
# i2vgen doesn't have this norm 🤷♂️
|
233 |
+
if self.norm_type == "ada_norm_continuous":
|
234 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
235 |
+
elif not self.norm_type == "ada_norm_single":
|
236 |
+
norm_hidden_states = self.norm3(hidden_states)
|
237 |
+
|
238 |
+
if self.norm_type == "ada_norm_zero":
|
239 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
240 |
+
|
241 |
+
if self.norm_type == "ada_norm_single":
|
242 |
+
norm_hidden_states = self.norm2(hidden_states)
|
243 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
244 |
+
|
245 |
+
if self._chunk_size is not None:
|
246 |
+
# "feed_forward_chunk_size" can be used to save memory
|
247 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
248 |
+
else:
|
249 |
+
ff_output = self.ff(norm_hidden_states)
|
250 |
+
|
251 |
+
if self.norm_type == "ada_norm_zero":
|
252 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
253 |
+
elif self.norm_type == "ada_norm_single":
|
254 |
+
ff_output = gate_mlp * ff_output
|
255 |
+
|
256 |
+
hidden_states = ff_output + hidden_states
|
257 |
+
if hidden_states.ndim == 4:
|
258 |
+
hidden_states = hidden_states.squeeze(1)
|
259 |
+
|
260 |
+
return hidden_states
|
261 |
+
|
262 |
+
|
263 |
+
class UNet2p5DConditionModel(torch.nn.Module):
|
264 |
+
def __init__(self, unet: UNet2DConditionModel) -> None:
|
265 |
+
super().__init__()
|
266 |
+
self.unet = unet
|
267 |
+
|
268 |
+
self.use_ma = True
|
269 |
+
self.use_ra = True
|
270 |
+
self.use_camera_embedding = True
|
271 |
+
self.use_dual_stream = True
|
272 |
+
|
273 |
+
if self.use_dual_stream:
|
274 |
+
self.unet_dual = copy.deepcopy(unet)
|
275 |
+
self.init_attention(self.unet_dual)
|
276 |
+
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra)
|
277 |
+
self.init_condition()
|
278 |
+
self.init_camera_embedding()
|
279 |
+
|
280 |
+
@staticmethod
|
281 |
+
def from_pretrained(pretrained_model_name_or_path, **kwargs):
|
282 |
+
torch_dtype = kwargs.pop('torch_dtype', torch.float32)
|
283 |
+
config_path = os.path.join(pretrained_model_name_or_path, 'config.json')
|
284 |
+
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin')
|
285 |
+
with open(config_path, 'r', encoding='utf-8') as file:
|
286 |
+
config = json.load(file)
|
287 |
+
unet = UNet2DConditionModel(**config)
|
288 |
+
unet = UNet2p5DConditionModel(unet)
|
289 |
+
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True)
|
290 |
+
unet.load_state_dict(unet_ckpt, strict=True)
|
291 |
+
unet = unet.to(torch_dtype)
|
292 |
+
return unet
|
293 |
+
|
294 |
+
def init_condition(self):
|
295 |
+
self.unet.conv_in = torch.nn.Conv2d(
|
296 |
+
12,
|
297 |
+
self.unet.conv_in.out_channels,
|
298 |
+
kernel_size=self.unet.conv_in.kernel_size,
|
299 |
+
stride=self.unet.conv_in.stride,
|
300 |
+
padding=self.unet.conv_in.padding,
|
301 |
+
dilation=self.unet.conv_in.dilation,
|
302 |
+
groups=self.unet.conv_in.groups,
|
303 |
+
bias=self.unet.conv_in.bias is not None)
|
304 |
+
|
305 |
+
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024))
|
306 |
+
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024))
|
307 |
+
|
308 |
+
def init_camera_embedding(self):
|
309 |
+
|
310 |
+
if self.use_camera_embedding:
|
311 |
+
time_embed_dim = 1280
|
312 |
+
self.max_num_ref_image = 5
|
313 |
+
self.max_num_gen_image = 12 * 3 + 4 * 2
|
314 |
+
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim)
|
315 |
+
|
316 |
+
def init_attention(self, unet, use_ma=False, use_ra=False):
|
317 |
+
|
318 |
+
for down_block_i, down_block in enumerate(unet.down_blocks):
|
319 |
+
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention:
|
320 |
+
for attn_i, attn in enumerate(down_block.attentions):
|
321 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
322 |
+
if isinstance(transformer, BasicTransformerBlock):
|
323 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer,
|
324 |
+
f'down_{down_block_i}_{attn_i}_{transformer_i}',
|
325 |
+
use_ma, use_ra)
|
326 |
+
|
327 |
+
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention:
|
328 |
+
for attn_i, attn in enumerate(unet.mid_block.attentions):
|
329 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
330 |
+
if isinstance(transformer, BasicTransformerBlock):
|
331 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer,
|
332 |
+
f'mid_{attn_i}_{transformer_i}',
|
333 |
+
use_ma, use_ra)
|
334 |
+
|
335 |
+
for up_block_i, up_block in enumerate(unet.up_blocks):
|
336 |
+
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention:
|
337 |
+
for attn_i, attn in enumerate(up_block.attentions):
|
338 |
+
for transformer_i, transformer in enumerate(attn.transformer_blocks):
|
339 |
+
if isinstance(transformer, BasicTransformerBlock):
|
340 |
+
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer,
|
341 |
+
f'up_{up_block_i}_{attn_i}_{transformer_i}',
|
342 |
+
use_ma, use_ra)
|
343 |
+
|
344 |
+
def __getattr__(self, name: str):
|
345 |
+
try:
|
346 |
+
return super().__getattr__(name)
|
347 |
+
except AttributeError:
|
348 |
+
return getattr(self.unet, name)
|
349 |
+
|
350 |
+
def forward(
|
351 |
+
self, sample, timestep, encoder_hidden_states,
|
352 |
+
*args, down_intrablock_additional_residuals=None,
|
353 |
+
down_block_res_samples=None, mid_block_res_sample=None,
|
354 |
+
**cached_condition,
|
355 |
+
):
|
356 |
+
B, N_gen, _, H, W = sample.shape
|
357 |
+
assert H == W
|
358 |
+
|
359 |
+
if self.use_camera_embedding:
|
360 |
+
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image
|
361 |
+
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)')
|
362 |
+
else:
|
363 |
+
camera_info_gen = None
|
364 |
+
|
365 |
+
sample = [sample]
|
366 |
+
if 'normal_imgs' in cached_condition:
|
367 |
+
sample.append(cached_condition["normal_imgs"])
|
368 |
+
if 'position_imgs' in cached_condition:
|
369 |
+
sample.append(cached_condition["position_imgs"])
|
370 |
+
sample = torch.cat(sample, dim=2)
|
371 |
+
|
372 |
+
sample = rearrange(sample, 'b n c h w -> (b n) c h w')
|
373 |
+
|
374 |
+
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1)
|
375 |
+
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c')
|
376 |
+
|
377 |
+
if self.use_ra:
|
378 |
+
if 'condition_embed_dict' in cached_condition:
|
379 |
+
condition_embed_dict = cached_condition['condition_embed_dict']
|
380 |
+
else:
|
381 |
+
condition_embed_dict = {}
|
382 |
+
ref_latents = cached_condition['ref_latents']
|
383 |
+
N_ref = ref_latents.shape[1]
|
384 |
+
if self.use_camera_embedding:
|
385 |
+
camera_info_ref = cached_condition['camera_info_ref']
|
386 |
+
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)')
|
387 |
+
else:
|
388 |
+
camera_info_ref = None
|
389 |
+
|
390 |
+
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w')
|
391 |
+
|
392 |
+
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1)
|
393 |
+
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c')
|
394 |
+
|
395 |
+
noisy_ref_latents = ref_latents
|
396 |
+
timestep_ref = 0
|
397 |
+
|
398 |
+
if self.use_dual_stream:
|
399 |
+
unet_ref = self.unet_dual
|
400 |
+
else:
|
401 |
+
unet_ref = self.unet
|
402 |
+
unet_ref(
|
403 |
+
noisy_ref_latents, timestep_ref,
|
404 |
+
encoder_hidden_states=encoder_hidden_states_ref,
|
405 |
+
class_labels=camera_info_ref,
|
406 |
+
# **kwargs
|
407 |
+
return_dict=False,
|
408 |
+
cross_attention_kwargs={
|
409 |
+
'mode': 'w', 'num_in_batch': N_ref,
|
410 |
+
'condition_embed_dict': condition_embed_dict},
|
411 |
+
)
|
412 |
+
cached_condition['condition_embed_dict'] = condition_embed_dict
|
413 |
+
else:
|
414 |
+
condition_embed_dict = None
|
415 |
+
|
416 |
+
mva_scale = cached_condition.get('mva_scale', 1.0)
|
417 |
+
ref_scale = cached_condition.get('ref_scale', 1.0)
|
418 |
+
|
419 |
+
return self.unet(
|
420 |
+
sample, timestep,
|
421 |
+
encoder_hidden_states_gen, *args,
|
422 |
+
class_labels=camera_info_gen,
|
423 |
+
down_intrablock_additional_residuals=[
|
424 |
+
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals
|
425 |
+
] if down_intrablock_additional_residuals is not None else None,
|
426 |
+
down_block_additional_residuals=[
|
427 |
+
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples
|
428 |
+
] if down_block_res_samples is not None else None,
|
429 |
+
mid_block_additional_residual=(
|
430 |
+
mid_block_res_sample.to(dtype=self.unet.dtype)
|
431 |
+
if mid_block_res_sample is not None else None
|
432 |
+
),
|
433 |
+
return_dict=False,
|
434 |
+
cross_attention_kwargs={
|
435 |
+
'mode': 'r', 'num_in_batch': N_gen,
|
436 |
+
'condition_embed_dict': condition_embed_dict,
|
437 |
+
'mva_scale': mva_scale,
|
438 |
+
'ref_scale': ref_scale,
|
439 |
+
},
|
440 |
+
)
|