davidvgilmore commited on
Commit
539f827
·
verified ·
1 Parent(s): 10f7165

Upload hy3dgen/shapegen/preprocessors.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. hy3dgen/shapegen/preprocessors.py +127 -0
hy3dgen/shapegen/preprocessors.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Open Source Model Licensed under the Apache License Version 2.0
2
+ # and Other Licenses of the Third-Party Components therein:
3
+ # The below Model in this distribution may have been modified by THL A29 Limited
4
+ # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
5
+ # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
6
+ # The below software and/or models in this distribution may have been
7
+ # modified by THL A29 Limited ("Tencent Modifications").
8
+ # All Tencent Modifications are Copyright (C) THL A29 Limited.
9
+
10
+ # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
11
+ # except for the third-party components listed below.
12
+ # Hunyuan 3D does not impose any additional limitations beyond what is outlined
13
+ # in the repsective licenses of these third-party components.
14
+ # Users must comply with all terms and conditions of original licenses of these third-party
15
+ # components and must ensure that the usage of the third party components adheres to
16
+ # all relevant laws and regulations.
17
+
18
+ # For avoidance of doubts, Hunyuan 3D means the large language models and
19
+ # their software and algorithms, including trained model weights, parameters (including
20
+ # optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
21
+ # fine-tuning enabling code and other elements of the foregoing made publicly available
22
+ # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
23
+
24
+ import cv2
25
+ import numpy as np
26
+ import torch
27
+ from PIL import Image
28
+ from einops import repeat, rearrange
29
+
30
+
31
+ def array_to_tensor(np_array):
32
+ image_pt = torch.tensor(np_array).float()
33
+ image_pt = image_pt / 255 * 2 - 1
34
+ image_pt = rearrange(image_pt, "h w c -> c h w")
35
+ image_pts = repeat(image_pt, "c h w -> b c h w", b=1)
36
+ return image_pts
37
+
38
+
39
+ class ImageProcessorV2:
40
+ def __init__(self, size=512, border_ratio=None):
41
+ self.size = size
42
+ self.border_ratio = border_ratio
43
+
44
+ @staticmethod
45
+ def recenter(image, border_ratio: float = 0.2):
46
+ """ recenter an image to leave some empty space at the image border.
47
+
48
+ Args:
49
+ image (ndarray): input image, float/uint8 [H, W, 3/4]
50
+ mask (ndarray): alpha mask, bool [H, W]
51
+ border_ratio (float, optional): border ratio, image will be resized to (1 - border_ratio). Defaults to 0.2.
52
+
53
+ Returns:
54
+ ndarray: output image, float/uint8 [H, W, 3/4]
55
+ """
56
+
57
+ if image.shape[-1] == 4:
58
+ mask = image[..., 3]
59
+ else:
60
+ mask = np.ones_like(image[..., 0:1]) * 255
61
+ image = np.concatenate([image, mask], axis=-1)
62
+ mask = mask[..., 0]
63
+
64
+ H, W, C = image.shape
65
+
66
+ size = max(H, W)
67
+ result = np.zeros((size, size, C), dtype=np.uint8)
68
+
69
+ coords = np.nonzero(mask)
70
+ x_min, x_max = coords[0].min(), coords[0].max()
71
+ y_min, y_max = coords[1].min(), coords[1].max()
72
+ h = x_max - x_min
73
+ w = y_max - y_min
74
+ if h == 0 or w == 0:
75
+ raise ValueError('input image is empty')
76
+ desired_size = int(size * (1 - border_ratio))
77
+ scale = desired_size / max(h, w)
78
+ h2 = int(h * scale)
79
+ w2 = int(w * scale)
80
+ x2_min = (size - h2) // 2
81
+ x2_max = x2_min + h2
82
+
83
+ y2_min = (size - w2) // 2
84
+ y2_max = y2_min + w2
85
+
86
+ result[x2_min:x2_max, y2_min:y2_max] = cv2.resize(image[x_min:x_max, y_min:y_max], (w2, h2),
87
+ interpolation=cv2.INTER_AREA)
88
+
89
+ bg = np.ones((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255
90
+ # bg = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8) * 255
91
+ mask = result[..., 3:].astype(np.float32) / 255
92
+ result = result[..., :3] * mask + bg * (1 - mask)
93
+
94
+ mask = mask * 255
95
+ result = result.clip(0, 255).astype(np.uint8)
96
+ mask = mask.clip(0, 255).astype(np.uint8)
97
+ return result, mask
98
+
99
+ def __call__(self, image, border_ratio=0.15, to_tensor=True, return_mask=False, **kwargs):
100
+ if self.border_ratio is not None:
101
+ border_ratio = self.border_ratio
102
+ print(f"Using border_ratio from init: {border_ratio}")
103
+ if isinstance(image, str):
104
+ image = cv2.imread(image, cv2.IMREAD_UNCHANGED)
105
+ image, mask = self.recenter(image, border_ratio=border_ratio)
106
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
107
+ elif isinstance(image, Image.Image):
108
+ image = np.asarray(image)
109
+ image, mask = self.recenter(image, border_ratio=border_ratio)
110
+
111
+ image = cv2.resize(image, (self.size, self.size), interpolation=cv2.INTER_CUBIC)
112
+ mask = cv2.resize(mask, (self.size, self.size), interpolation=cv2.INTER_NEAREST)
113
+ mask = mask[..., np.newaxis]
114
+
115
+ if to_tensor:
116
+ image = array_to_tensor(image)
117
+ mask = array_to_tensor(mask)
118
+ if return_mask:
119
+ return image, mask
120
+ return image
121
+
122
+
123
+ IMAGE_PROCESSORS = {
124
+ "v2": ImageProcessorV2,
125
+ }
126
+
127
+ DEFAULT_IMAGEPROCESSOR = 'v2'