Spaces:
Runtime error
Runtime error
Upload hy3dgen/shapegen/pipelines.py with huggingface_hub
Browse files- hy3dgen/shapegen/pipelines.py +589 -0
hy3dgen/shapegen/pipelines.py
ADDED
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Open Source Model Licensed under the Apache License Version 2.0
|
2 |
+
# and Other Licenses of the Third-Party Components therein:
|
3 |
+
# The below Model in this distribution may have been modified by THL A29 Limited
|
4 |
+
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited.
|
5 |
+
|
6 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
7 |
+
# The below software and/or models in this distribution may have been
|
8 |
+
# modified by THL A29 Limited ("Tencent Modifications").
|
9 |
+
# All Tencent Modifications are Copyright (C) THL A29 Limited.
|
10 |
+
|
11 |
+
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT
|
12 |
+
# except for the third-party components listed below.
|
13 |
+
# Hunyuan 3D does not impose any additional limitations beyond what is outlined
|
14 |
+
# in the repsective licenses of these third-party components.
|
15 |
+
# Users must comply with all terms and conditions of original licenses of these third-party
|
16 |
+
# components and must ensure that the usage of the third party components adheres to
|
17 |
+
# all relevant laws and regulations.
|
18 |
+
|
19 |
+
# For avoidance of doubts, Hunyuan 3D means the large language models and
|
20 |
+
# their software and algorithms, including trained model weights, parameters (including
|
21 |
+
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code,
|
22 |
+
# fine-tuning enabling code and other elements of the foregoing made publicly available
|
23 |
+
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT.
|
24 |
+
|
25 |
+
import copy
|
26 |
+
import importlib
|
27 |
+
import inspect
|
28 |
+
import logging
|
29 |
+
import os
|
30 |
+
from typing import List, Optional, Union
|
31 |
+
|
32 |
+
import numpy as np
|
33 |
+
import torch
|
34 |
+
import trimesh
|
35 |
+
import yaml
|
36 |
+
from PIL import Image
|
37 |
+
from diffusers.utils.torch_utils import randn_tensor
|
38 |
+
from tqdm import tqdm
|
39 |
+
|
40 |
+
logger = logging.getLogger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
def retrieve_timesteps(
|
44 |
+
scheduler,
|
45 |
+
num_inference_steps: Optional[int] = None,
|
46 |
+
device: Optional[Union[str, torch.device]] = None,
|
47 |
+
timesteps: Optional[List[int]] = None,
|
48 |
+
sigmas: Optional[List[float]] = None,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
"""
|
52 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
53 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
54 |
+
|
55 |
+
Args:
|
56 |
+
scheduler (`SchedulerMixin`):
|
57 |
+
The scheduler to get timesteps from.
|
58 |
+
num_inference_steps (`int`):
|
59 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
60 |
+
must be `None`.
|
61 |
+
device (`str` or `torch.device`, *optional*):
|
62 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
63 |
+
timesteps (`List[int]`, *optional*):
|
64 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
65 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
66 |
+
sigmas (`List[float]`, *optional*):
|
67 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
68 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
72 |
+
second element is the number of inference steps.
|
73 |
+
"""
|
74 |
+
if timesteps is not None and sigmas is not None:
|
75 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
76 |
+
if timesteps is not None:
|
77 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
78 |
+
if not accepts_timesteps:
|
79 |
+
raise ValueError(
|
80 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
81 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
82 |
+
)
|
83 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
84 |
+
timesteps = scheduler.timesteps
|
85 |
+
num_inference_steps = len(timesteps)
|
86 |
+
elif sigmas is not None:
|
87 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
88 |
+
if not accept_sigmas:
|
89 |
+
raise ValueError(
|
90 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
91 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
92 |
+
)
|
93 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
94 |
+
timesteps = scheduler.timesteps
|
95 |
+
num_inference_steps = len(timesteps)
|
96 |
+
else:
|
97 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
98 |
+
timesteps = scheduler.timesteps
|
99 |
+
return timesteps, num_inference_steps
|
100 |
+
|
101 |
+
|
102 |
+
def export_to_trimesh(mesh_output):
|
103 |
+
if isinstance(mesh_output, list):
|
104 |
+
outputs = []
|
105 |
+
for mesh in mesh_output:
|
106 |
+
if mesh is None:
|
107 |
+
outputs.append(None)
|
108 |
+
else:
|
109 |
+
mesh.mesh_f = mesh.mesh_f[:, ::-1]
|
110 |
+
mesh_output = trimesh.Trimesh(mesh.mesh_v, mesh.mesh_f)
|
111 |
+
outputs.append(mesh_output)
|
112 |
+
return outputs
|
113 |
+
else:
|
114 |
+
mesh_output.mesh_f = mesh_output.mesh_f[:, ::-1]
|
115 |
+
mesh_output = trimesh.Trimesh(mesh_output.mesh_v, mesh_output.mesh_f)
|
116 |
+
return mesh_output
|
117 |
+
|
118 |
+
|
119 |
+
def get_obj_from_str(string, reload=False):
|
120 |
+
module, cls = string.rsplit(".", 1)
|
121 |
+
if reload:
|
122 |
+
module_imp = importlib.import_module(module)
|
123 |
+
importlib.reload(module_imp)
|
124 |
+
return getattr(importlib.import_module(module, package=None), cls)
|
125 |
+
|
126 |
+
|
127 |
+
def instantiate_from_config(config, **kwargs):
|
128 |
+
if "target" not in config:
|
129 |
+
raise KeyError("Expected key `target` to instantiate.")
|
130 |
+
cls = get_obj_from_str(config["target"])
|
131 |
+
params = config.get("params", dict())
|
132 |
+
kwargs.update(params)
|
133 |
+
instance = cls(**kwargs)
|
134 |
+
return instance
|
135 |
+
|
136 |
+
|
137 |
+
class Hunyuan3DDiTPipeline:
|
138 |
+
@classmethod
|
139 |
+
def from_single_file(
|
140 |
+
cls,
|
141 |
+
ckpt_path,
|
142 |
+
config_path,
|
143 |
+
device='cuda',
|
144 |
+
dtype=torch.float16,
|
145 |
+
use_safetensors=None,
|
146 |
+
**kwargs,
|
147 |
+
):
|
148 |
+
# load config
|
149 |
+
with open(config_path, 'r') as f:
|
150 |
+
config = yaml.safe_load(f)
|
151 |
+
|
152 |
+
# load ckpt
|
153 |
+
if use_safetensors:
|
154 |
+
ckpt_path = ckpt_path.replace('.ckpt', '.safetensors')
|
155 |
+
if not os.path.exists(ckpt_path):
|
156 |
+
raise FileNotFoundError(f"Model file {ckpt_path} not found")
|
157 |
+
logger.info(f"Loading model from {ckpt_path}")
|
158 |
+
|
159 |
+
if use_safetensors:
|
160 |
+
# parse safetensors
|
161 |
+
import safetensors.torch
|
162 |
+
safetensors_ckpt = safetensors.torch.load_file(ckpt_path, device='cpu')
|
163 |
+
ckpt = {}
|
164 |
+
for key, value in safetensors_ckpt.items():
|
165 |
+
model_name = key.split('.')[0]
|
166 |
+
new_key = key[len(model_name) + 1:]
|
167 |
+
if model_name not in ckpt:
|
168 |
+
ckpt[model_name] = {}
|
169 |
+
ckpt[model_name][new_key] = value
|
170 |
+
else:
|
171 |
+
ckpt = torch.load(ckpt_path, map_location='cpu')
|
172 |
+
# load model
|
173 |
+
model = instantiate_from_config(config['model'])
|
174 |
+
model.load_state_dict(ckpt['model'])
|
175 |
+
vae = instantiate_from_config(config['vae'])
|
176 |
+
vae.load_state_dict(ckpt['vae'])
|
177 |
+
conditioner = instantiate_from_config(config['conditioner'])
|
178 |
+
if 'conditioner' in ckpt:
|
179 |
+
conditioner.load_state_dict(ckpt['conditioner'])
|
180 |
+
image_processor = instantiate_from_config(config['image_processor'])
|
181 |
+
scheduler = instantiate_from_config(config['scheduler'])
|
182 |
+
|
183 |
+
model_kwargs = dict(
|
184 |
+
vae=vae,
|
185 |
+
model=model,
|
186 |
+
scheduler=scheduler,
|
187 |
+
conditioner=conditioner,
|
188 |
+
image_processor=image_processor,
|
189 |
+
scheduler_cfg=config['scheduler'],
|
190 |
+
device=device,
|
191 |
+
dtype=dtype,
|
192 |
+
)
|
193 |
+
model_kwargs.update(kwargs)
|
194 |
+
|
195 |
+
return cls(
|
196 |
+
**model_kwargs
|
197 |
+
)
|
198 |
+
|
199 |
+
@classmethod
|
200 |
+
def from_pretrained(
|
201 |
+
cls,
|
202 |
+
model_path,
|
203 |
+
ckpt_name='model.ckpt',
|
204 |
+
config_name='config.yaml',
|
205 |
+
device='cuda',
|
206 |
+
dtype=torch.float16,
|
207 |
+
use_safetensors=None,
|
208 |
+
**kwargs,
|
209 |
+
):
|
210 |
+
original_model_path = model_path
|
211 |
+
if not os.path.exists(model_path):
|
212 |
+
# try local path
|
213 |
+
base_dir = os.environ.get('HY3DGEN_MODELS', '~/.cache/hy3dgen')
|
214 |
+
model_path = os.path.expanduser(os.path.join(base_dir, model_path, 'hunyuan3d-dit-v2-0'))
|
215 |
+
if not os.path.exists(model_path):
|
216 |
+
try:
|
217 |
+
import huggingface_hub
|
218 |
+
# download from huggingface
|
219 |
+
path = huggingface_hub.snapshot_download(repo_id=original_model_path)
|
220 |
+
model_path = os.path.join(path, 'hunyuan3d-dit-v2-0')
|
221 |
+
except ImportError:
|
222 |
+
logger.warning(
|
223 |
+
"You need to install HuggingFace Hub to load models from the hub."
|
224 |
+
)
|
225 |
+
raise RuntimeError(f"Model path {model_path} not found")
|
226 |
+
if not os.path.exists(model_path):
|
227 |
+
raise FileNotFoundError(f"Model path {original_model_path} not found")
|
228 |
+
|
229 |
+
config_path = os.path.join(model_path, config_name)
|
230 |
+
ckpt_path = os.path.join(model_path, ckpt_name)
|
231 |
+
return cls.from_single_file(
|
232 |
+
ckpt_path,
|
233 |
+
config_path,
|
234 |
+
device=device,
|
235 |
+
dtype=dtype,
|
236 |
+
use_safetensors=use_safetensors,
|
237 |
+
**kwargs
|
238 |
+
)
|
239 |
+
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
vae,
|
243 |
+
model,
|
244 |
+
scheduler,
|
245 |
+
conditioner,
|
246 |
+
image_processor,
|
247 |
+
device='cuda',
|
248 |
+
dtype=torch.float16,
|
249 |
+
**kwargs
|
250 |
+
):
|
251 |
+
self.vae = vae
|
252 |
+
self.model = model
|
253 |
+
self.scheduler = scheduler
|
254 |
+
self.conditioner = conditioner
|
255 |
+
self.image_processor = image_processor
|
256 |
+
self.kwargs = kwargs
|
257 |
+
|
258 |
+
self.to(device, dtype)
|
259 |
+
|
260 |
+
def to(self, device=None, dtype=None):
|
261 |
+
if device is not None:
|
262 |
+
self.device = torch.device(device)
|
263 |
+
self.vae.to(device)
|
264 |
+
self.model.to(device)
|
265 |
+
self.conditioner.to(device)
|
266 |
+
if dtype is not None:
|
267 |
+
self.dtype = dtype
|
268 |
+
self.vae.to(dtype=dtype)
|
269 |
+
self.model.to(dtype=dtype)
|
270 |
+
self.conditioner.to(dtype=dtype)
|
271 |
+
|
272 |
+
def encode_cond(self, image, mask, do_classifier_free_guidance, dual_guidance):
|
273 |
+
bsz = image.shape[0]
|
274 |
+
cond = self.conditioner(image=image, mask=mask)
|
275 |
+
|
276 |
+
if do_classifier_free_guidance:
|
277 |
+
un_cond = self.conditioner.unconditional_embedding(bsz)
|
278 |
+
|
279 |
+
if dual_guidance:
|
280 |
+
un_cond_drop_main = copy.deepcopy(un_cond)
|
281 |
+
un_cond_drop_main['additional'] = cond['additional']
|
282 |
+
|
283 |
+
def cat_recursive(a, b, c):
|
284 |
+
if isinstance(a, torch.Tensor):
|
285 |
+
return torch.cat([a, b, c], dim=0).to(self.dtype)
|
286 |
+
out = {}
|
287 |
+
for k in a.keys():
|
288 |
+
out[k] = cat_recursive(a[k], b[k], c[k])
|
289 |
+
return out
|
290 |
+
|
291 |
+
cond = cat_recursive(cond, un_cond_drop_main, un_cond)
|
292 |
+
else:
|
293 |
+
un_cond = self.conditioner.unconditional_embedding(bsz)
|
294 |
+
|
295 |
+
def cat_recursive(a, b):
|
296 |
+
if isinstance(a, torch.Tensor):
|
297 |
+
return torch.cat([a, b], dim=0).to(self.dtype)
|
298 |
+
out = {}
|
299 |
+
for k in a.keys():
|
300 |
+
out[k] = cat_recursive(a[k], b[k])
|
301 |
+
return out
|
302 |
+
|
303 |
+
cond = cat_recursive(cond, un_cond)
|
304 |
+
return cond
|
305 |
+
|
306 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
307 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
308 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
309 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
310 |
+
# and should be between [0, 1]
|
311 |
+
|
312 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
313 |
+
extra_step_kwargs = {}
|
314 |
+
if accepts_eta:
|
315 |
+
extra_step_kwargs["eta"] = eta
|
316 |
+
|
317 |
+
# check if the scheduler accepts generator
|
318 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
319 |
+
if accepts_generator:
|
320 |
+
extra_step_kwargs["generator"] = generator
|
321 |
+
return extra_step_kwargs
|
322 |
+
|
323 |
+
def prepare_latents(self, batch_size, dtype, device, generator, latents=None):
|
324 |
+
shape = (batch_size, *self.vae.latent_shape)
|
325 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
326 |
+
raise ValueError(
|
327 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
328 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
329 |
+
)
|
330 |
+
|
331 |
+
if latents is None:
|
332 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
333 |
+
else:
|
334 |
+
latents = latents.to(device)
|
335 |
+
|
336 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
337 |
+
latents = latents * getattr(self.scheduler, 'init_noise_sigma', 1.0)
|
338 |
+
return latents
|
339 |
+
|
340 |
+
def prepare_image(self, image):
|
341 |
+
if isinstance(image, str) and not os.path.exists(image):
|
342 |
+
raise FileNotFoundError(f"Couldn't find image at path {image}")
|
343 |
+
|
344 |
+
if not isinstance(image, list):
|
345 |
+
image = [image]
|
346 |
+
image_pts = []
|
347 |
+
mask_pts = []
|
348 |
+
for img in image:
|
349 |
+
image_pt, mask_pt = self.image_processor(img, return_mask=True)
|
350 |
+
image_pts.append(image_pt)
|
351 |
+
mask_pts.append(mask_pt)
|
352 |
+
|
353 |
+
image_pts = torch.cat(image_pts, dim=0).to(self.device, dtype=self.dtype)
|
354 |
+
if mask_pts[0] is not None:
|
355 |
+
mask_pts = torch.cat(mask_pts, dim=0).to(self.device, dtype=self.dtype)
|
356 |
+
else:
|
357 |
+
mask_pts = None
|
358 |
+
return image_pts, mask_pts
|
359 |
+
|
360 |
+
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
|
361 |
+
"""
|
362 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
363 |
+
|
364 |
+
Args:
|
365 |
+
timesteps (`torch.Tensor`):
|
366 |
+
generate embedding vectors at these timesteps
|
367 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
368 |
+
dimension of the embeddings to generate
|
369 |
+
dtype:
|
370 |
+
data type of the generated embeddings
|
371 |
+
|
372 |
+
Returns:
|
373 |
+
`torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
|
374 |
+
"""
|
375 |
+
assert len(w.shape) == 1
|
376 |
+
w = w * 1000.0
|
377 |
+
|
378 |
+
half_dim = embedding_dim // 2
|
379 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
380 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
381 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
382 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
383 |
+
if embedding_dim % 2 == 1: # zero pad
|
384 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
385 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
386 |
+
return emb
|
387 |
+
|
388 |
+
@torch.no_grad()
|
389 |
+
def __call__(
|
390 |
+
self,
|
391 |
+
image: Union[str, List[str], Image.Image] = None,
|
392 |
+
num_inference_steps: int = 50,
|
393 |
+
timesteps: List[int] = None,
|
394 |
+
sigmas: List[float] = None,
|
395 |
+
eta: float = 0.0,
|
396 |
+
guidance_scale: float = 7.5,
|
397 |
+
dual_guidance_scale: float = 10.5,
|
398 |
+
dual_guidance: bool = True,
|
399 |
+
generator=None,
|
400 |
+
box_v=1.01,
|
401 |
+
octree_resolution=384,
|
402 |
+
mc_level=-1 / 512,
|
403 |
+
num_chunks=8000,
|
404 |
+
mc_algo='mc',
|
405 |
+
output_type: Optional[str] = "trimesh",
|
406 |
+
enable_pbar=True,
|
407 |
+
**kwargs,
|
408 |
+
) -> List[List[trimesh.Trimesh]]:
|
409 |
+
callback = kwargs.pop("callback", None)
|
410 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
411 |
+
|
412 |
+
device = self.device
|
413 |
+
dtype = self.dtype
|
414 |
+
do_classifier_free_guidance = guidance_scale >= 0 and \
|
415 |
+
getattr(self.model, 'guidance_cond_proj_dim', None) is None
|
416 |
+
dual_guidance = dual_guidance_scale >= 0 and dual_guidance
|
417 |
+
|
418 |
+
image, mask = self.prepare_image(image)
|
419 |
+
cond = self.encode_cond(image=image,
|
420 |
+
mask=mask,
|
421 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
422 |
+
dual_guidance=dual_guidance)
|
423 |
+
batch_size = image.shape[0]
|
424 |
+
|
425 |
+
t_dtype = torch.long
|
426 |
+
scheduler = instantiate_from_config(self.kwargs['scheduler_cfg'])
|
427 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
428 |
+
scheduler, num_inference_steps, device, timesteps, sigmas
|
429 |
+
)
|
430 |
+
|
431 |
+
latents = self.prepare_latents(batch_size, dtype, device, generator)
|
432 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
433 |
+
|
434 |
+
guidance_cond = None
|
435 |
+
if getattr(self.model, 'guidance_cond_proj_dim', None) is not None:
|
436 |
+
print('Using lcm guidance scale')
|
437 |
+
guidance_scale_tensor = torch.tensor(guidance_scale - 1).repeat(batch_size)
|
438 |
+
guidance_cond = self.get_guidance_scale_embedding(
|
439 |
+
guidance_scale_tensor, embedding_dim=self.model.guidance_cond_proj_dim
|
440 |
+
).to(device=device, dtype=latents.dtype)
|
441 |
+
|
442 |
+
for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:", leave=False)):
|
443 |
+
# expand the latents if we are doing classifier free guidance
|
444 |
+
if do_classifier_free_guidance:
|
445 |
+
latent_model_input = torch.cat([latents] * (3 if dual_guidance else 2))
|
446 |
+
else:
|
447 |
+
latent_model_input = latents
|
448 |
+
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
|
449 |
+
|
450 |
+
# predict the noise residual
|
451 |
+
timestep_tensor = torch.tensor([t], dtype=t_dtype, device=device)
|
452 |
+
timestep_tensor = timestep_tensor.expand(latent_model_input.shape[0])
|
453 |
+
noise_pred = self.model(latent_model_input, timestep_tensor, cond, guidance_cond=guidance_cond)
|
454 |
+
|
455 |
+
# no drop, drop clip, all drop
|
456 |
+
if do_classifier_free_guidance:
|
457 |
+
if dual_guidance:
|
458 |
+
noise_pred_clip, noise_pred_dino, noise_pred_uncond = noise_pred.chunk(3)
|
459 |
+
noise_pred = (
|
460 |
+
noise_pred_uncond
|
461 |
+
+ guidance_scale * (noise_pred_clip - noise_pred_dino)
|
462 |
+
+ dual_guidance_scale * (noise_pred_dino - noise_pred_uncond)
|
463 |
+
)
|
464 |
+
else:
|
465 |
+
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
|
466 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
467 |
+
|
468 |
+
# compute the previous noisy sample x_t -> x_t-1
|
469 |
+
outputs = scheduler.step(noise_pred, t, latents, **extra_step_kwargs)
|
470 |
+
latents = outputs.prev_sample
|
471 |
+
|
472 |
+
if callback is not None and i % callback_steps == 0:
|
473 |
+
step_idx = i // getattr(scheduler, "order", 1)
|
474 |
+
callback(step_idx, t, outputs)
|
475 |
+
|
476 |
+
return self._export(
|
477 |
+
latents,
|
478 |
+
output_type,
|
479 |
+
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
|
480 |
+
)
|
481 |
+
|
482 |
+
def _export(self, latents, output_type, box_v, mc_level, num_chunks, octree_resolution, mc_algo):
|
483 |
+
if not output_type == "latent":
|
484 |
+
latents = 1. / self.vae.scale_factor * latents
|
485 |
+
latents = self.vae(latents)
|
486 |
+
outputs = self.vae.latents2mesh(
|
487 |
+
latents,
|
488 |
+
bounds=box_v,
|
489 |
+
mc_level=mc_level,
|
490 |
+
num_chunks=num_chunks,
|
491 |
+
octree_resolution=octree_resolution,
|
492 |
+
mc_algo=mc_algo,
|
493 |
+
)
|
494 |
+
else:
|
495 |
+
outputs = latents
|
496 |
+
|
497 |
+
if output_type == 'trimesh':
|
498 |
+
outputs = export_to_trimesh(outputs)
|
499 |
+
|
500 |
+
return outputs
|
501 |
+
|
502 |
+
|
503 |
+
class Hunyuan3DDiTFlowMatchingPipeline(Hunyuan3DDiTPipeline):
|
504 |
+
|
505 |
+
@torch.no_grad()
|
506 |
+
def __call__(
|
507 |
+
self,
|
508 |
+
image: Union[str, List[str], Image.Image] = None,
|
509 |
+
num_inference_steps: int = 50,
|
510 |
+
timesteps: List[int] = None,
|
511 |
+
sigmas: List[float] = None,
|
512 |
+
eta: float = 0.0,
|
513 |
+
guidance_scale: float = 7.5,
|
514 |
+
generator=None,
|
515 |
+
box_v=1.01,
|
516 |
+
octree_resolution=384,
|
517 |
+
mc_level=0.0,
|
518 |
+
mc_algo='mc',
|
519 |
+
num_chunks=8000,
|
520 |
+
output_type: Optional[str] = "trimesh",
|
521 |
+
enable_pbar=True,
|
522 |
+
**kwargs,
|
523 |
+
) -> List[List[trimesh.Trimesh]]:
|
524 |
+
callback = kwargs.pop("callback", None)
|
525 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
526 |
+
|
527 |
+
device = self.device
|
528 |
+
dtype = self.dtype
|
529 |
+
do_classifier_free_guidance = guidance_scale >= 0 and not (
|
530 |
+
hasattr(self.model, 'guidance_embed') and
|
531 |
+
self.model.guidance_embed is True
|
532 |
+
)
|
533 |
+
|
534 |
+
image, mask = self.prepare_image(image)
|
535 |
+
cond = self.encode_cond(
|
536 |
+
image=image,
|
537 |
+
mask=mask,
|
538 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
539 |
+
dual_guidance=False,
|
540 |
+
)
|
541 |
+
batch_size = image.shape[0]
|
542 |
+
|
543 |
+
# 5. Prepare timesteps
|
544 |
+
# NOTE: this is slightly different from common usage, we start from 0.
|
545 |
+
sigmas = np.linspace(0, 1, num_inference_steps) if sigmas is None else sigmas
|
546 |
+
scheduler = instantiate_from_config(self.kwargs['scheduler_cfg'])
|
547 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
548 |
+
scheduler,
|
549 |
+
num_inference_steps,
|
550 |
+
device,
|
551 |
+
sigmas=sigmas,
|
552 |
+
)
|
553 |
+
latents = self.prepare_latents(batch_size, dtype, device, generator)
|
554 |
+
|
555 |
+
guidance = None
|
556 |
+
if hasattr(self.model, 'guidance_embed') and \
|
557 |
+
self.model.guidance_embed is True:
|
558 |
+
guidance = torch.tensor([guidance_scale] * batch_size, device=device, dtype=dtype)
|
559 |
+
|
560 |
+
for i, t in enumerate(tqdm(timesteps, disable=not enable_pbar, desc="Diffusion Sampling:")):
|
561 |
+
# expand the latents if we are doing classifier free guidance
|
562 |
+
if do_classifier_free_guidance:
|
563 |
+
latent_model_input = torch.cat([latents] * 2)
|
564 |
+
else:
|
565 |
+
latent_model_input = latents
|
566 |
+
|
567 |
+
# NOTE: we assume model get timesteps ranged from 0 to 1
|
568 |
+
timestep = t.expand(latent_model_input.shape[0]).to(
|
569 |
+
latents.dtype) / scheduler.config.num_train_timesteps
|
570 |
+
noise_pred = self.model(latent_model_input, timestep, cond, guidance=guidance)
|
571 |
+
|
572 |
+
if do_classifier_free_guidance:
|
573 |
+
noise_pred_cond, noise_pred_uncond = noise_pred.chunk(2)
|
574 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
575 |
+
|
576 |
+
# compute the previous noisy sample x_t -> x_t-1
|
577 |
+
outputs = scheduler.step(noise_pred, t, latents)
|
578 |
+
latents = outputs.prev_sample
|
579 |
+
|
580 |
+
if callback is not None and i % callback_steps == 0:
|
581 |
+
step_idx = i // getattr(scheduler, "order", 1)
|
582 |
+
callback(step_idx, t, outputs)
|
583 |
+
|
584 |
+
return self._export(
|
585 |
+
latents,
|
586 |
+
output_type,
|
587 |
+
box_v, mc_level, num_chunks, octree_resolution, mc_algo,
|
588 |
+
)
|
589 |
+
|