Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,437 Bytes
cc34edf b278503 cc34edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import spaces
import gradio as gr
import torch
import numpy as np
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import platform
import librosa
import multiprocessing
from dataclasses import dataclass
from typing import Dict, Tuple, List
@dataclass
class ModelConfig:
name: str
processor: Wav2Vec2Processor
model: Wav2Vec2ForCTC
description: str
class PhoneticEnhancer:
def __init__(self):
# Vowel length rules
self.long_vowels = {
'i': 'iː',
'u': 'uː',
'a': 'ɑː',
'ɑ': 'ɑː',
'e': 'eː',
'o': 'oː'
}
# Common diphthongs
self.diphthongs = {
'ei': 'eɪ',
'ai': 'aɪ',
'oi': 'ɔɪ',
'ou': 'əʊ',
'au': 'aʊ'
}
# Vowel quality adjustments
self.vowel_quality = {
'ə': 'æ', # In stressed positions
'ɐ': 'æ' # Common substitution
}
# Stress pattern rules
self.stress_patterns = [
# (pattern, position) - position is index from start
(['CV', 'CV'], 1), # For words like "piage"
(['CVV', 'CV'], 0), # For words with long first vowel
]
def _is_vowel(self, phoneme: str) -> bool:
vowels = set('aeiouɑɐəæɛɪʊʌɔ')
return any(char in vowels for char in phoneme)
def _split_into_syllables(self, phonemes: List[str]) -> List[List[str]]:
syllables = []
current_syllable = []
for phoneme in phonemes:
current_syllable.append(phoneme)
if self._is_vowel(phoneme) and len(current_syllable) > 0:
syllables.append(current_syllable)
current_syllable = []
if current_syllable:
if len(syllables) > 0:
syllables[-1].extend(current_syllable)
else:
syllables.append(current_syllable)
return syllables
def enhance_transcription(self, raw_phonemes: str, enhancements: List[str] = None) -> str:
if enhancements is None:
enhancements = ['length', 'quality', 'stress', 'diphthongs']
# Split into individual phonemes
phonemes = raw_phonemes.split()
enhanced_phonemes = phonemes.copy()
if 'length' in enhancements:
# Apply vowel length rules
for i, phoneme in enumerate(enhanced_phonemes):
if phoneme in self.long_vowels:
enhanced_phonemes[i] = self.long_vowels[phoneme]
if 'quality' in enhancements:
# Apply vowel quality adjustments
for i, phoneme in enumerate(enhanced_phonemes):
if phoneme in self.vowel_quality:
enhanced_phonemes[i] = self.vowel_quality[phoneme]
if 'diphthongs' in enhancements:
# Apply diphthong rules
i = 0
while i < len(enhanced_phonemes) - 1:
pair = enhanced_phonemes[i] + enhanced_phonemes[i + 1]
if pair in self.diphthongs:
enhanced_phonemes[i] = self.diphthongs[pair]
enhanced_phonemes.pop(i + 1)
i += 1
if 'stress' in enhancements:
# Add stress marks based on syllable structure
syllables = self._split_into_syllables(enhanced_phonemes)
if len(syllables) > 1:
# Add stress to the syllable containing 'æ' if present
for i, syll in enumerate(syllables):
if any('æ' in p for p in syll):
syllables[i].insert(0, 'ˈ')
break
# If no 'æ', add stress to first syllable by default
else:
syllables[0].insert(0, 'ˈ')
# Flatten syllables back to phonemes
enhanced_phonemes = [p for syll in syllables for p in syll]
return ' '.join(enhanced_phonemes)
class PhonemeTranscriber:
def __init__(self):
self.device = self._get_optimal_device()
print(f"Using device: {self.device}")
self.model_config = self._initialize_model()
self.target_sample_rate = 16_000
self.enhancer = PhoneticEnhancer()
def _get_optimal_device(self):
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available() and platform.system() == 'Darwin':
return "mps"
return "cpu"
def _initialize_model(self) -> ModelConfig:
model_name = "facebook/wav2vec2-lv-60-espeak-cv-ft"
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
return ModelConfig(
name=model_name,
processor=processor,
model=model,
description="LV-60 + CommonVoice (26 langs) + eSpeak"
)
def preprocess_audio(self, audio):
"""Preprocess audio data for model input."""
if isinstance(audio, tuple):
sample_rate, audio_data = audio
else:
return None
if audio_data.dtype != np.float32:
audio_data = audio_data.astype(np.float32)
if audio_data.max() > 1.0 or audio_data.min() < -1.0:
audio_data = audio_data / 32768.0
if len(audio_data.shape) > 1:
audio_data = audio_data.mean(axis=1)
if sample_rate != self.target_sample_rate:
audio_data = librosa.resample(
y=audio_data,
orig_sr=sample_rate,
target_sr=self.target_sample_rate
)
return audio_data
@spaces.GPU
def transcribe_to_phonemes(self, audio, enhancements):
"""Transcribe audio to phonemes with enhancements."""
try:
audio_data = self.preprocess_audio(audio)
if audio_data is None:
return "Please provide valid audio input"
selected_enhancements = enhancements.split(',') if enhancements else []
inputs = self.model_config.processor(
audio_data,
sampling_rate=self.target_sample_rate,
return_tensors="pt",
padding=True
).input_values.to(self.device)
with torch.no_grad():
logits = self.model_config.model(inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.model_config.processor.batch_decode(predicted_ids)[0]
enhanced = self.enhancer.enhance_transcription(
transcription,
selected_enhancements
)
return f"""Raw IPA: {transcription}
Enhanced IPA: {enhanced}
Applied enhancements: {', '.join(selected_enhancements) or 'none'}"""
except Exception as e:
import traceback
return f"Error processing audio: {str(e)}\n{traceback.format_exc()}"
if __name__ == "__main__":
multiprocessing.freeze_support()
transcriber = PhonemeTranscriber()
iface = gr.Interface(
fn=transcriber.transcribe_to_phonemes,
inputs=[
gr.Audio(sources=["microphone", "upload"], type="numpy"),
gr.Textbox(
label="Enhancements (comma-separated)",
value="length,quality,stress,diphthongs",
placeholder="e.g., length,quality,stress,diphthongs"
)
],
outputs="text",
title="Speech to Phoneme Converter - Enhanced IPA",
description=f"""Convert speech to phonemes with customizable IPA enhancements.
Currently using device: {transcriber.device}
Available enhancements:
- length: Add vowel length markers (ː)
- quality: Adjust vowel quality (e.g., ə → æ)
- stress: Add stress marks (ˈ)
- diphthongs: Combine vowels into diphthongs (e.g., ei → eɪ)
"""
)
iface.launch() |