import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct # model_id = "deepseek-ai/deepseek-coder-1.3b-instruct" model_id = "deepseek-ai/deepseek-coder-6.7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own! model = AutoModelForCausalLM.from_pretrained(model_id, # device_map=None, # torch_dtype=torch.float32, device_map="auto", torch_dtype=torch.float16, trust_remote_code=True) # model.to("cpu") def generate_code(prompt, style="Clean & Pythonic"): if style == "Verbose like a 15th-century manuscript": prompt = "In a manner most detailed, write code that... " + prompt inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, # max_new_tokens=100, max_new_tokens=500, do_sample=True, temperature=1.0, top_p=0.95, # eos_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface( fn=generate_code, inputs=[ gr.Textbox(label="How shall Codice Da Vinci help today?", lines=3), gr.Dropdown(["Clean & Pythonic", "Verbose like a 15th-century manuscript"], label="Code Style") ], outputs=gr.Code(label="๐Ÿงพ Leonardo's Work"), title="Codice Da Vinci ๐Ÿ“œ๐Ÿ’ป", description="Your Renaissance coding assistant. Fluent in algorithms and Latin. Powered by LLM." ) demo.launch()