import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct") # Or your own! model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-1.3b-instruct", torch_dtype=torch.float32, trust_remote_code=True) def generate_code(prompt, style="Clean & Pythonic"): if style == "Verbose like a 15th-century manuscript": prompt = "In a manner most detailed, write code that... " + prompt inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=1.0, top_p=0.95, use_cache=False) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface( fn=generate_code, inputs=[ gr.Textbox(label="How shall Codice Da Vinci help today?", lines=3), gr.Dropdown(["Clean & Pythonic", "Verbose like a 15th-century manuscript"], label="Code Style") ], outputs=gr.Code(label="๐Ÿงพ Leonardo's Work"), title="Codice Da Vinci ๐Ÿ“œ๐Ÿ’ป", description="Your Renaissance coding assistant. Fluent in algorithms and Latin. Powered by LLM." ) demo.launch()