davidizzle commited on
Commit
17bea6b
·
1 Parent(s): 24ff264

Model upgrade and GPU Support

Browse files
Files changed (2) hide show
  1. .gradio/flagged/dataset2.csv +2 -0
  2. app.py +11 -4
.gradio/flagged/dataset2.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ How shall Codice Da Vinci help today?,Code Style,🧾 Leonardo's Work,timestamp
2
+ "make a script to compute fibonacci numbers, no comments please",Clean & Pythonic,,2025-04-19 15:21:21.859616
app.py CHANGED
@@ -3,17 +3,24 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
3
  import torch
4
 
5
  # deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
6
- model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
 
7
  tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own!
8
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map=None, torch_dtype=torch.float32, trust_remote_code=True)
9
- model.to("cpu")
 
 
 
 
 
10
 
11
  def generate_code(prompt, style="Clean & Pythonic"):
12
  if style == "Verbose like a 15th-century manuscript":
13
  prompt = "In a manner most detailed, write code that... " + prompt
14
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
15
  outputs = model.generate(**inputs,
16
- max_new_tokens=100,
 
17
  do_sample=True,
18
  temperature=1.0,
19
  top_p=0.95,
 
3
  import torch
4
 
5
  # deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
6
+ # model_id = "deepseek-ai/deepseek-coder-1.3b-instruct"
7
+ model_id = "deepseek-ai/deepseek-coder-6.7b-instruct"
8
  tokenizer = AutoTokenizer.from_pretrained(model_id) # Or your own!
9
+ model = AutoModelForCausalLM.from_pretrained(model_id,
10
+ # device_map=None,
11
+ # torch_dtype=torch.float32,
12
+ device_map="auto",
13
+ torch_dtype=torch.float16,
14
+ trust_remote_code=True)
15
+ # model.to("cpu")
16
 
17
  def generate_code(prompt, style="Clean & Pythonic"):
18
  if style == "Verbose like a 15th-century manuscript":
19
  prompt = "In a manner most detailed, write code that... " + prompt
20
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
21
  outputs = model.generate(**inputs,
22
+ # max_new_tokens=100,
23
+ max_new_tokens=300,
24
  do_sample=True,
25
  temperature=1.0,
26
  top_p=0.95,