Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct") # Or your own! | |
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", device_map="auto", torch_dtype=torch.float16, trust_remote_code=True) | |
def generate_code(prompt, style="Clean & Pythonic"): | |
if style == "Verbose like a 15th-century manuscript": | |
prompt = "In a manner most detailed, write code that... " + prompt | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, | |
max_new_tokens=256, | |
do_sample=True, | |
temperature=1.0, | |
top_p=0.95, | |
use_cache=False) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
demo = gr.Interface( | |
fn=generate_code, | |
inputs=[ | |
gr.Textbox(label="How shall Codice Da Vinci help today?", lines=3), | |
gr.Dropdown(["Clean & Pythonic", "Verbose like a 15th-century manuscript"], label="Code Style") | |
], | |
outputs=gr.Code(label="🧾 Leonardo's Work"), | |
title="Codice Da Vinci 🧠💻", | |
description="Your Renaissance coding assistant. Fluent in algorithms and Latin. Powered by LLM." | |
) | |
demo.launch() | |