ameerazam08 commited on
Commit
0538750
·
1 Parent(s): bbeac87

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -21
app.py CHANGED
@@ -32,7 +32,7 @@ source_image = load_image('https://huggingface.co/lllyasviel/control_v11f1e_sd15
32
  def super_esr(source_image,prompt,negative_prompt,strength,seed,num_inference_steps):
33
  condition_image = resize_for_condition_image(source_image, 1024)
34
  image = pipe(prompt=prompt,#"best quality",
35
- negative_prompt=negative_prompt,#"blur, lowres, bad anatomy, bad hands, cropped, worst quality",
36
  image=condition_image,
37
  controlnet_conditioning_image=condition_image,
38
  width=condition_image.size[0],
@@ -45,24 +45,23 @@ def super_esr(source_image,prompt,negative_prompt,strength,seed,num_inference_st
45
  return source_image
46
 
47
  #define laund take input nsame as super_esr function
48
- def launch():
49
- inputs=[
50
- gr.inputs.Image(type="pil",label="Source Image"),
51
- gr.inputs.Textbox(lines=2,label="Prompt"),
52
- gr.inputs.Textbox(lines=2,label="Negative Prompt"),
53
- gr.inputs.Slider(minimum=0,maximum=1,label="Strength"),
54
- gr.inputs.Slider(minimum=0,maximum=100,label="Seed"),
55
- gr.inputs.Slider(minimum=0,maximum=100,label="Num Inference Steps")
56
- ]
57
- outputs=[
58
- gr.outputs.Image(type="pil",label="Output Image")
59
- ]
60
- title="Super ESR"
61
- description="Super ESR is a super resolution model that uses diffusion to generate high resolution images from low resolution images"
62
- examples=[
63
- ["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100],
64
- ["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100],
65
- ]
66
- gr.Interface(fn=super_esr,inputs=inputs,outputs=outputs,title=title,description=description,examples=examples).launch(share=True)
67
 
68
- launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  def super_esr(source_image,prompt,negative_prompt,strength,seed,num_inference_steps):
33
  condition_image = resize_for_condition_image(source_image, 1024)
34
  image = pipe(prompt=prompt,#"best quality",
35
+ negative_prompt="blur, lowres, bad anatomy, bad hands, cropped, worst quality",
36
  image=condition_image,
37
  controlnet_conditioning_image=condition_image,
38
  width=condition_image.size[0],
 
45
  return source_image
46
 
47
  #define laund take input nsame as super_esr function
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ inputs=[
50
+ gr.inputs.Image(type="pil",label="Source Image"),
51
+ gr.inputs.Textbox(lines=2,label="Prompt"),
52
+ gr.inputs.Textbox(lines=2,label="Negative Prompt"),
53
+ gr.inputs.Slider(minimum=0,maximum=1,label="Strength"),
54
+ gr.inputs.Slider(minimum=0,maximum=100,label="Seed"),
55
+ gr.inputs.Slider(minimum=0,maximum=100,label="Num Inference Steps")
56
+ ]
57
+ outputs=[
58
+ gr.outputs.Image(type="pil",label="Output Image")
59
+ ]
60
+ title="Super ESR"
61
+ description="Super ESR is a super resolution model that uses diffusion to generate high resolution images from low resolution images"
62
+ examples=[
63
+ ["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100],
64
+ ["https://i.imgur.com/9IqyX1F.png","best quality","blur, lowres, bad anatomy, bad hands, cropped, worst quality",1.0,0,100],
65
+ ]
66
+ #create queue the rerquests
67
+ gr.Interface(fn=super_esr,inputs=inputs,outputs=outputs,title=title,description=description,examples=examples).launch()