Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ def youtube_url_to_text(url, model_id, language_choice):
|
|
27 |
return transcript, video_path
|
28 |
|
29 |
|
30 |
-
def speaker_diarization(url, model_id
|
31 |
"""
|
32 |
Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
|
33 |
a specified model, and returns the transcript along with the video path.
|
@@ -47,12 +47,11 @@ def speaker_diarization(url, model_id, device, num_speakers, min_speaker, max_sp
|
|
47 |
diarizer_model="pyannote/speaker-diarization",
|
48 |
use_auth_token=False,
|
49 |
chunk_length_s=30,
|
50 |
-
device=
|
51 |
)
|
52 |
|
53 |
audio_path = download_and_convert_to_mp3(url)
|
54 |
-
output_text = pipeline(
|
55 |
-
audio_path, num_speakers=num_speakers, min_speaker=min_speaker, max_speaker=max_speaker)
|
56 |
dialogue = format_speech_to_dialogue(output_text)
|
57 |
return dialogue, audio_path
|
58 |
|
@@ -140,11 +139,7 @@ def speaker_diarization_app():
|
|
140 |
value="openai/whisper-large-v3",
|
141 |
label="Whisper Model",
|
142 |
)
|
143 |
-
|
144 |
-
choices=["cpu", "cuda", "mps"],
|
145 |
-
value="cuda",
|
146 |
-
label="Device",
|
147 |
-
)
|
148 |
num_speakers = gr.Number(value=2, label="Number of Speakers")
|
149 |
min_speaker = gr.Number(value=1, label="Minimum Number of Speakers")
|
150 |
max_speaker = gr.Number(value=2, label="Maximum Number of Speakers")
|
@@ -171,20 +166,12 @@ def speaker_diarization_app():
|
|
171 |
[
|
172 |
"https://www.youtube.com/shorts/o8PgLUgte2k",
|
173 |
"openai/whisper-large-v3",
|
174 |
-
"cuda",
|
175 |
-
2,
|
176 |
-
1,
|
177 |
-
2,
|
178 |
],
|
179 |
],
|
180 |
fn=speaker_diarization,
|
181 |
inputs=[
|
182 |
youtube_url_path,
|
183 |
whisper_model_id,
|
184 |
-
device,
|
185 |
-
num_speakers,
|
186 |
-
min_speaker,
|
187 |
-
max_speaker,
|
188 |
],
|
189 |
outputs=[output_text, output_audio],
|
190 |
cache_examples=True,
|
|
|
27 |
return transcript, video_path
|
28 |
|
29 |
|
30 |
+
def speaker_diarization(url, model_id):
|
31 |
"""
|
32 |
Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
|
33 |
a specified model, and returns the transcript along with the video path.
|
|
|
47 |
diarizer_model="pyannote/speaker-diarization",
|
48 |
use_auth_token=False,
|
49 |
chunk_length_s=30,
|
50 |
+
device="cuda",
|
51 |
)
|
52 |
|
53 |
audio_path = download_and_convert_to_mp3(url)
|
54 |
+
output_text = pipeline(audio_path)
|
|
|
55 |
dialogue = format_speech_to_dialogue(output_text)
|
56 |
return dialogue, audio_path
|
57 |
|
|
|
139 |
value="openai/whisper-large-v3",
|
140 |
label="Whisper Model",
|
141 |
)
|
142 |
+
|
|
|
|
|
|
|
|
|
143 |
num_speakers = gr.Number(value=2, label="Number of Speakers")
|
144 |
min_speaker = gr.Number(value=1, label="Minimum Number of Speakers")
|
145 |
max_speaker = gr.Number(value=2, label="Maximum Number of Speakers")
|
|
|
166 |
[
|
167 |
"https://www.youtube.com/shorts/o8PgLUgte2k",
|
168 |
"openai/whisper-large-v3",
|
|
|
|
|
|
|
|
|
169 |
],
|
170 |
],
|
171 |
fn=speaker_diarization,
|
172 |
inputs=[
|
173 |
youtube_url_path,
|
174 |
whisper_model_id,
|
|
|
|
|
|
|
|
|
175 |
],
|
176 |
outputs=[output_text, output_audio],
|
177 |
cache_examples=True,
|