Spaces:
Runtime error
Runtime error
File size: 5,708 Bytes
bbe4238 884c49d 0c8b1e1 bd8e31e 0c8b1e1 bbe4238 0c8b1e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
from whisperplus.utils.download_utils import download_and_convert_to_mp3
import logging
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class SpeechToTextPipeline:
"""Class for converting audio to text using a pre-trained speech recognition model."""
def __init__(self, model_id: str = "openai/whisper-large-v3"):
self.model = None
self.device = None
if self.model is None:
self.load_model(model_id)
else:
logging.info("Model already loaded.")
def load_model(self, model_id: str = "openai/whisper-large-v3"):
"""
Loads the pre-trained speech recognition model and moves it to the specified device.
Args:
model_id (str): Identifier of the pre-trained model to be loaded.
"""
logging.info("Loading model...")
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, use_safetensors=True)
model.to(self.device)
logging.info("Model loaded successfully.")
self.model = model
def __call__(self, audio_path: str, model_id: str = "openai/whisper-large-v3", language: str = "turkish"):
"""
Converts audio to text using the pre-trained speech recognition model.
Args:
audio_path (str): Path to the audio file to be transcribed.
model_id (str): Identifier of the pre-trained model to be used for transcription.
Returns:
str: Transcribed text from the audio.
"""
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=self.model,
torch_dtype=torch.float16,
chunk_length_s=30,
max_new_tokens=128,
batch_size=24,
return_timestamps=True,
device="cuda",
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
model_kwargs={"use_flash_attention_2": True},
generate_kwargs={"language": language},
)
logging.info("Transcribing audio...")
result = pipe(audio_path)["text"]
return result
def youtube_url_to_text(url, model_id, language_choice):
"""
Main function that downloads and converts a video to MP3 format, performs speech-to-text conversion using
a specified model, and returns the transcript along with the video path.
Args:
url (str): The URL of the video to download and convert.
model_id (str): The ID of the speech-to-text model to use.
language_choice (str): The language choice for the speech-to-text conversion.
Returns:
transcript (str): The transcript of the speech-to-text conversion.
video_path (str): The path of the downloaded video.
"""
video_path = download_and_convert_to_mp3(url)
pipeline = SpeechToTextPipeline(model_id)
transcript = pipeline(audio_path=video_path, model_id=model_id, language=language_choice)
return transcript, video_path
def youtube_url_to_text_app():
with gr.Blocks():
with gr.Row():
with gr.Column():
youtube_url_path = gr.Text(placeholder="Enter Youtube URL", label="Youtube URL")
language_choice = gr.Dropdown(
choices=[
"English",
"Turkish",
"Spanish",
"French",
"Chinese",
"Japanese",
"Korean",
],
value="Turkish",
label="Language",
)
whisper_model_id = gr.Dropdown(
choices=[
"openai/whisper-large-v3",
"openai/whisper-large",
"openai/whisper-medium",
"openai/whisper-base",
"openai/whisper-small",
"openai/whisper-tiny",
],
value="openai/whisper-large-v3",
label="Whisper Model",
)
whisperplus_in_predict = gr.Button(value="Generator")
with gr.Column():
output_text = gr.Textbox(label="Output Text")
output_audio = gr.Audio(label="Output Audio")
whisperplus_in_predict.click(
fn=youtube_url_to_text,
inputs=[
youtube_url_path,
whisper_model_id,
language_choice,
],
outputs=[output_text, output_audio],
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
WhisperPlus: Advancing Speech-to-Text Processing 🚀
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
Follow me for more!
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
</h3>
""")
with gr.Row():
with gr.Column():
with gr.Tab(label="Youtube URL to Text"):
youtube_url_to_text_app()
gradio_app.queue()
gradio_app.launch(debug=True)
|