from omegaconf import OmegaConf
from query import VectaraQuery
import os
import gradio as gr
def isTrue(x) -> bool:
if isinstance(x, bool):
return x
return x.strip().lower() == 'true'
corpus_keys = str(os.environ['corpus_keys']).split(',')
cfg = OmegaConf.create({
'corpus_keys': corpus_keys,
'api_key': str(os.environ['api_key']),
'title': os.environ['title'],
'source_data_desc': os.environ['source_data_desc'],
'streaming': isTrue(os.environ.get('streaming', False)),
'prompt_name': os.environ.get('prompt_name', None),
'examples': os.environ.get('examples', None)
})
vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
def respond(message, history):
if cfg.streaming:
# Call stream response and stream output
stream = vq.submit_query_streaming(message)
outputs = ""
for output in stream:
outputs += output
yield outputs
else:
# Call non-stream response and return message output
response = vq.submit_query(message)
yield response
def vote(data: gr.LikeData):
if data.liked:
print("Received Thumbs up")
else:
print("Received Thumbs down")
heading_html = f'''
Vectara AI Assistant: {cfg.title} |
|
This demo uses Retrieval Augmented Generation from Vectara to ask questions about {cfg.source_data_desc}. |
'''
bot_css = """
table {
border: none;
width: 100%;
table-layout: fixed;
border-collapse: separate;
}
td {
vertical-align: middle;
border: none;
}
img {
width: 75%;
}
h1 {
font-size: 2em; /* Adjust the size as needed */
}
"""
if cfg.examples:
app_examples = [example.strip() for example in cfg.examples.split(",")]
else:
app_examples = None
with gr.Blocks() as demo:
chatbot = gr.Chatbot(value = [[None, "How may I help you?"]])
chatbot.like(vote, None, None)
gr.ChatInterface(respond, description = heading_html, css = bot_css,
chatbot = chatbot, examples = app_examples, cache_examples = False)
if __name__ == "__main__":
demo.launch()
# from omegaconf import OmegaConf
# from query import VectaraQuery
# import os
# import gradio as gr
# def isTrue(x) -> bool:
# if isinstance(x, bool):
# return x
# return x.strip().lower() == 'true'
# corpus_keys = str(os.environ['corpus_keys']).split(',')
# cfg = OmegaConf.create({
# 'corpus_keys': corpus_keys,
# 'api_key': str(os.environ['api_key']),
# 'title': os.environ['title'],
# 'source_data_desc': os.environ['source_data_desc'],
# 'streaming': isTrue(os.environ.get('streaming', False)),
# 'prompt_name': os.environ.get('prompt_name', None),
# 'examples': os.environ.get('examples', None)
# })
# vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
# def respond(message, history):
# if cfg.streaming:
# # Call stream response and stream output
# stream = vq.submit_query_streaming(message)
# for output in stream:
# yield output
# else:
# # Call non-stream response and return message output
# response = vq.submit_query(message)
# yield response
# def vote(data: gr.LikeData):
# if data.liked:
# print("Received Thumbs up")
# else:
# print("Received Thumbs down")
# heading_html = f'''
#
#
#
# Vectara AI Assistant: {cfg.title}
# |
#
#
# |
#
#
# This demo uses Retrieval Augmented Generation from Vectara to ask questions about {cfg.source_data_desc}. |
#
#
# '''
# bot_css = """
# table { border: none; width: 100%; table-layout: fixed; border-collapse: separate;}
# td { vertical-align: middle; border: none;}
# img { width: 75%;}
# h1 { font-size: 2em; /* Adjust the size as needed */}
# """
# if cfg.examples:
# app_examples = [example.strip() for example in cfg.examples.split(",")]
# else:
# app_examples = None
# with gr.Blocks(css=bot_css) as demo:
# gr.HTML(heading_html)
# chatbot = gr.Chatbot(value=[[None, "How may I help you?"]])
# msg = gr.Textbox(label="Message")
# clear = gr.Button("Clear")
# def user(message, history):
# return "", history + [[message, None]]
# def bot(history):
# message = history[-1][0]
# bot_message = respond(message, history)
# if cfg.streaming:
# full_response = ""
# for chunk in bot_message:
# full_response += chunk
# history[-1][1] = full_response
# yield history
# else:
# history[-1][1] = next(bot_message)
# yield history
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
# bot, chatbot, chatbot, api_name="bot_response"
# )
# chatbot.like(vote, None, None)
# clear.click(lambda: None, None, chatbot, queue=False)
# if app_examples:
# gr.Examples(
# app_examples,
# inputs=msg,
# outputs=chatbot,
# fn=user,
# cache_examples=False
# )
# if __name__ == "__main__":
# demo.launch()
# from omegaconf import OmegaConf
# from query import VectaraQuery
# import os
# import gradio as gr
# def isTrue(x) -> bool:
# if isinstance(x, bool):
# return x
# return x.strip().lower() == 'true'
# corpus_keys = str(os.environ['corpus_keys']).split(',')
# cfg = OmegaConf.create({
# 'corpus_keys': corpus_keys,
# 'api_key': str(os.environ['api_key']),
# 'title': os.environ['title'],
# 'source_data_desc': os.environ['source_data_desc'],
# 'streaming': isTrue(os.environ.get('streaming', False)),
# 'prompt_name': os.environ.get('prompt_name', None),
# 'examples': os.environ.get('examples', None)
# })
# vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
# def respond(message, history):
# if cfg.streaming:
# # Call stream response and stream output
# stream = vq.submit_query_streaming(message)
# outputs = ""
# for output in stream:
# outputs += output
# yield outputs
# else:
# # Call non-stream response and return message output
# response = vq.submit_query(message)
# yield response
# heading_html = f'''
#
#
# Vectara AI Assistant: {cfg.title} |
# |
#
#
# This demo uses Retrieval Augmented Generation from Vectara to ask questions about {cfg.source_data_desc}. |
#
#
# '''
# bot_css = """
# table {
# border: none;
# width: 100%;
# table-layout: fixed;
# border-collapse: separate;
# }
# td {
# vertical-align: middle;
# border: none;
# }
# img {
# width: 75%;
# }
# h1 {
# font-size: 2em; /* Adjust the size as needed */
# }
# """
# if cfg.examples:
# app_examples = [example.strip() for example in cfg.examples.split(",")]
# else:
# app_examples = None
# demo = gr.ChatInterface(respond, description = heading_html, css = bot_css,
# chatbot = gr.Chatbot(value = [[None, "How may I help you?"]]), examples = app_examples, cache_examples = False)
# if __name__ == "__main__":
# demo.launch()