Spaces:
Sleeping
Sleeping
from omegaconf import OmegaConf | |
from query import VectaraQuery | |
import os | |
from PIL import Image | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
corpus_ids = str(os.environ['corpus_ids']).split(',') | |
cfg = OmegaConf.create({ | |
'customer_id': str(os.environ['customer_id']), | |
'corpus_ids': corpus_ids, | |
'api_key': str(os.environ['api_key']), | |
'title': os.environ['title'], | |
'description': os.environ['description'], | |
'source_data_desc': os.environ['source_data_desc'], | |
'streaming': isTrue(os.environ.get('streaming', False)), | |
'prompt_name': os.environ.get('prompt_name', None) | |
}) | |
def random_fun(message, history): | |
return message + '!' | |
demo = gr.ChatInterface(random_fun, title = cfg.title, description = cfg.description) | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
) | |
if __name__ == "__main__": | |
demo.launch() |