Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from sklearn.cluster import KMeans
|
4 |
+
import numpy as np
|
5 |
+
import cv2
|
6 |
+
from webcolors import hex_to_rgb, rgb_to_hex
|
7 |
+
from scipy.spatial import KDTree
|
8 |
+
from collections import Counter
|
9 |
+
|
10 |
+
model = tf.keras.models.load_model("model.h5")
|
11 |
+
|
12 |
+
classes = [
|
13 |
+
"background", "skin", "left eyebrow", "right eyebrow",
|
14 |
+
"left eye", "right eye", "nose", "upper lip", "inner mouth",
|
15 |
+
"lower lip", "hair"
|
16 |
+
]
|
17 |
+
|
18 |
+
def face_skin_extract(pred, image_x):
|
19 |
+
output = np.zeros_like(image_x, dtype=np.uint8)
|
20 |
+
mask = (pred == 1)
|
21 |
+
output[mask] = image_x[mask]
|
22 |
+
return output
|
23 |
+
|
24 |
+
def extract_dom_color_kmeans(img):
|
25 |
+
|
26 |
+
|
27 |
+
mask = ~np.all(img == [0, 0, 0], axis=-1) # Mask to exclude black pixels
|
28 |
+
|
29 |
+
|
30 |
+
non_black_pixels = img[mask] # Extract non-black pixels
|
31 |
+
|
32 |
+
|
33 |
+
k_cluster = KMeans(n_clusters=3, n_init="auto") # Apply KMeans clustering on non-black pixels
|
34 |
+
k_cluster.fit(non_black_pixels)
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
width = 300
|
40 |
+
palette = np.zeros((50, width, 3), dtype=np.uint8)
|
41 |
+
|
42 |
+
n_pixels = len(k_cluster.labels_)
|
43 |
+
counter = Counter(k_cluster.labels_)
|
44 |
+
|
45 |
+
perc = {i: np.round(counter[i] / n_pixels, 2) for i in counter}
|
46 |
+
perc = dict(sorted(perc.items()))
|
47 |
+
|
48 |
+
cluster_centers = k_cluster.cluster_centers_
|
49 |
+
|
50 |
+
# print("Cluster Percentages:", perc)
|
51 |
+
# print("Cluster Centers (RGB):", cluster_centers)
|
52 |
+
|
53 |
+
val = list(perc.values())
|
54 |
+
val.sort()
|
55 |
+
res = val[-1]
|
56 |
+
print(res)
|
57 |
+
sec_high_val = list(perc.keys())[list(perc.values()).index(res)]
|
58 |
+
rgb_list = cluster_centers[sec_high_val]
|
59 |
+
|
60 |
+
step = 0
|
61 |
+
for idx, center in enumerate(k_cluster.cluster_centers_):
|
62 |
+
width_step = int(perc[idx] * width + 1)
|
63 |
+
palette[:, step:step + width_step, :] = center
|
64 |
+
step += width_step
|
65 |
+
|
66 |
+
return rgb_list
|
67 |
+
|
68 |
+
def closest_tone_match(rgb_tuple):
|
69 |
+
skin_tones = {'Monk 10': '#292420', 'Monk 9': '#3a312a', 'Monk 8':'#604134', 'Monk 7':'#825c43', 'Monk 6':'#a07e56', 'Monk 5':'#d7bd96', 'Monk 4':'#eadaba', 'Monk 3':'#f7ead0', 'Monk 2':'#f3e7db', 'Monk 1':'#f6ede4'}
|
70 |
+
|
71 |
+
rgb_values = []
|
72 |
+
names = []
|
73 |
+
for monk in skin_tones:
|
74 |
+
names.append(monk)
|
75 |
+
rgb_values.append(hex_to_rgb(skin_tones[monk]))
|
76 |
+
|
77 |
+
kdt_db = KDTree(rgb_values)
|
78 |
+
distance, index = kdt_db.query(rgb_tuple)
|
79 |
+
monk_hex = skin_tones[names[index]]
|
80 |
+
derived_hex = rgb_to_hex((int(rgb_tuple[0]), int(rgb_tuple[1]), int(rgb_tuple[2])))
|
81 |
+
return names[index],monk_hex,derived_hex
|
82 |
+
|
83 |
+
def process_image(image_path):
|
84 |
+
|
85 |
+
image = cv2.imread(image_path)
|
86 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
87 |
+
|
88 |
+
image_x = cv2.resize(image, (512, 512))
|
89 |
+
image_norm = image_x / 255.0
|
90 |
+
image_norm = np.expand_dims(image_norm, axis=0).astype(np.float32)
|
91 |
+
|
92 |
+
pred = model.predict(image_norm)[0]
|
93 |
+
pred = np.argmax(pred, axis=-1).astype(np.int32)
|
94 |
+
|
95 |
+
face_skin = face_skin_extract(pred, image_x)
|
96 |
+
face_skin_vis = cv2.imread(face_skin)
|
97 |
+
dominant_color_rgb = extract_dom_color_kmeans(face_skin)
|
98 |
+
|
99 |
+
monk_tone, monk_hex, derived_hex = closest_tone_match(
|
100 |
+
(dominant_color_rgb[0], dominant_color_rgb[1], dominant_color_rgb[2])
|
101 |
+
)
|
102 |
+
|
103 |
+
return [monk_tone,derived_hex,monk_hex,face_skin_vis]
|
104 |
+
|
105 |
+
|
106 |
+
inputs = gr.Image(type="filepath", label="Upload Face Image")
|
107 |
+
outputs = [
|
108 |
+
gr.Label(label="Monk Skin Tone"),
|
109 |
+
gr.ColorPicker(label="Derived Color"),
|
110 |
+
gr.ColorPicker(label="Closest Monk Color"),
|
111 |
+
# gr.JSON(label="Dominant RGB Values"),
|
112 |
+
gr.Image(label="Skin Mask Visualization")
|
113 |
+
]
|
114 |
+
|
115 |
+
interface = gr.Interface(
|
116 |
+
fn=process_image,
|
117 |
+
inputs=inputs,
|
118 |
+
outputs=outputs,
|
119 |
+
title="Skin Tone Analysis",
|
120 |
+
description="Upload a face image to analyse skin tone and find closest Monk skin tone match."
|
121 |
+
)
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
interface.launch()
|