Spaces:
Sleeping
Sleeping
# Ultralytics YOLOv5 🚀, AGPL-3.0 license | |
""" | |
PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5 | |
Usage: | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # official model | |
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') # from branch | |
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') # custom/local model | |
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') # local repo | |
""" | |
import torch | |
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
""" | |
Creates or loads a YOLOv5 model, with options for pretrained weights and model customization. | |
Args: | |
name (str): Model name (e.g., 'yolov5s') or path to the model checkpoint (e.g., 'path/to/best.pt'). | |
pretrained (bool, optional): If True, loads pretrained weights into the model. Defaults to True. | |
channels (int, optional): Number of input channels the model expects. Defaults to 3. | |
classes (int, optional): Number of classes the model is expected to detect. Defaults to 80. | |
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper for various input formats. Defaults to True. | |
verbose (bool, optional): If True, prints detailed information during the model creation/loading process. Defaults to True. | |
device (str | torch.device | None, optional): Device to use for model parameters (e.g., 'cpu', 'cuda'). If None, selects | |
the best available device. Defaults to None. | |
Returns: | |
(DetectMultiBackend | AutoShape): The loaded YOLOv5 model, potentially wrapped with AutoShape if specified. | |
Examples: | |
```python | |
import torch | |
from ultralytics import _create | |
# Load an official YOLOv5s model with pretrained weights | |
model = _create('yolov5s') | |
# Load a custom model from a local checkpoint | |
model = _create('path/to/custom_model.pt', pretrained=False) | |
# Load a model with specific input channels and classes | |
model = _create('yolov5s', channels=1, classes=10) | |
``` | |
Notes: | |
For more information on model loading and customization, visit the | |
[YOLOv5 PyTorch Hub Documentation](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading). | |
""" | |
from pathlib import Path | |
from models.common import AutoShape, DetectMultiBackend | |
from models.experimental import attempt_load | |
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel | |
from utils.downloads import attempt_download | |
from utils.general import LOGGER, ROOT, check_requirements, intersect_dicts, logging | |
from utils.torch_utils import select_device | |
if not verbose: | |
LOGGER.setLevel(logging.WARNING) | |
check_requirements(ROOT / "requirements.txt", exclude=("opencv-python", "tensorboard", "thop")) | |
name = Path(name) | |
path = name.with_suffix(".pt") if name.suffix == "" and not name.is_dir() else name # checkpoint path | |
try: | |
device = select_device(device) | |
if pretrained and channels == 3 and classes == 80: | |
try: | |
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model | |
if autoshape: | |
if model.pt and isinstance(model.model, ClassificationModel): | |
LOGGER.warning( | |
"WARNING ⚠️ YOLOv5 ClassificationModel is not yet AutoShape compatible. " | |
"You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224)." | |
) | |
elif model.pt and isinstance(model.model, SegmentationModel): | |
LOGGER.warning( | |
"WARNING ⚠️ YOLOv5 SegmentationModel is not yet AutoShape compatible. " | |
"You will not be able to run inference with this model." | |
) | |
else: | |
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS | |
except Exception: | |
model = attempt_load(path, device=device, fuse=False) # arbitrary model | |
else: | |
cfg = list((Path(__file__).parent / "models").rglob(f"{path.stem}.yaml"))[0] # model.yaml path | |
model = DetectionModel(cfg, channels, classes) # create model | |
if pretrained: | |
ckpt = torch.load(attempt_download(path), map_location=device) # load | |
csd = ckpt["model"].float().state_dict() # checkpoint state_dict as FP32 | |
csd = intersect_dicts(csd, model.state_dict(), exclude=["anchors"]) # intersect | |
model.load_state_dict(csd, strict=False) # load | |
if len(ckpt["model"].names) == classes: | |
model.names = ckpt["model"].names # set class names attribute | |
if not verbose: | |
LOGGER.setLevel(logging.INFO) # reset to default | |
return model.to(device) | |
except Exception as e: | |
help_url = "https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading" | |
s = f"{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help." | |
raise Exception(s) from e | |
def custom(path="path/to/model.pt", autoshape=True, _verbose=True, device=None): | |
""" | |
Loads a custom or local YOLOv5 model from a given path with optional autoshaping and device specification. | |
Args: | |
path (str): Path to the custom model file (e.g., 'path/to/model.pt'). | |
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model if True, enabling compatibility with various input | |
types (default is True). | |
_verbose (bool): If True, prints all informational messages to the screen; otherwise, operates silently | |
(default is True). | |
device (str | torch.device | None): Device to load the model on, e.g., 'cpu', 'cuda', torch.device('cuda:0'), etc. | |
(default is None, which automatically selects the best available device). | |
Returns: | |
torch.nn.Module: A YOLOv5 model loaded with the specified parameters. | |
Notes: | |
For more details on loading models from PyTorch Hub: | |
https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading | |
Examples: | |
```python | |
# Load model from a given path with autoshape enabled on the best available device | |
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') | |
# Load model from a local path without autoshape on the CPU device | |
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local', autoshape=False, device='cpu') | |
``` | |
""" | |
return _create(path, autoshape=autoshape, verbose=_verbose, device=device) | |
def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Instantiates the YOLOv5-nano model with options for pretraining, input channels, class count, autoshaping, | |
verbosity, and device. | |
Args: | |
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True. | |
channels (int): Number of input channels for the model. Defaults to 3. | |
classes (int): Number of classes for object detection. Defaults to 80. | |
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper to the model for various formats (file/URI/PIL/ | |
cv2/np) and non-maximum suppression (NMS) during inference. Defaults to True. | |
_verbose (bool): If True, prints detailed information to the screen. Defaults to True. | |
device (str | torch.device | None): Specifies the device to use for model computation. If None, uses the best device | |
available (i.e., GPU if available, otherwise CPU). Defaults to None. | |
Returns: | |
DetectionModel | ClassificationModel | SegmentationModel: The instantiated YOLOv5-nano model, potentially with | |
pretrained weights and autoshaping applied. | |
Notes: | |
For further details on loading models from PyTorch Hub, refer to [PyTorch Hub models](https://pytorch.org/hub/ | |
ultralytics_yolov5). | |
Examples: | |
```python | |
import torch | |
from ultralytics import yolov5n | |
# Load the YOLOv5-nano model with defaults | |
model = yolov5n() | |
# Load the YOLOv5-nano model with a specific device | |
model = yolov5n(device='cuda') | |
``` | |
""" | |
return _create("yolov5n", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Create a YOLOv5-small (yolov5s) model with options for pretraining, input channels, class count, autoshaping, | |
verbosity, and device configuration. | |
Args: | |
pretrained (bool, optional): Flag to load pretrained weights into the model. Defaults to True. | |
channels (int, optional): Number of input channels. Defaults to 3. | |
classes (int, optional): Number of model classes. Defaults to 80. | |
autoshape (bool, optional): Whether to wrap the model with YOLOv5's .autoshape() for handling various input formats. | |
Defaults to True. | |
_verbose (bool, optional): Flag to print detailed information regarding model loading. Defaults to True. | |
device (str | torch.device | None, optional): Device to use for model computation, can be 'cpu', 'cuda', or | |
torch.device instances. If None, automatically selects the best available device. Defaults to None. | |
Returns: | |
torch.nn.Module: The YOLOv5-small model configured and loaded according to the specified parameters. | |
Example: | |
```python | |
import torch | |
# Load the official YOLOv5-small model with pretrained weights | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') | |
# Load the YOLOv5-small model from a specific branch | |
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s') | |
# Load a custom YOLOv5-small model from a local checkpoint | |
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5s.pt') | |
# Load a local YOLOv5-small model specifying source as local repository | |
model = torch.hub.load('.', 'custom', 'yolov5s.pt', source='local') | |
``` | |
Notes: | |
For more details on model loading and customization, visit | |
the [YOLOv5 PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5). | |
""" | |
return _create("yolov5s", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Instantiates the YOLOv5-medium model with customizable pretraining, channel count, class count, autoshaping, | |
verbosity, and device. | |
Args: | |
pretrained (bool, optional): Whether to load pretrained weights into the model. Default is True. | |
channels (int, optional): Number of input channels. Default is 3. | |
classes (int, optional): Number of model classes. Default is 80. | |
autoshape (bool, optional): Apply YOLOv5 .autoshape() wrapper to the model for handling various input formats. | |
Default is True. | |
_verbose (bool, optional): Whether to print detailed information to the screen. Default is True. | |
device (str | torch.device | None, optional): Device specification to use for model parameters (e.g., 'cpu', 'cuda'). | |
Default is None. | |
Returns: | |
torch.nn.Module: The instantiated YOLOv5-medium model. | |
Usage Example: | |
```python | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5m') # Load YOLOv5-medium from Ultralytics repository | |
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5m') # Load from the master branch | |
model = torch.hub.load('ultralytics/yolov5', 'custom', 'yolov5m.pt') # Load a custom/local YOLOv5-medium model | |
model = torch.hub.load('.', 'custom', 'yolov5m.pt', source='local') # Load from a local repository | |
``` | |
For more information, visit https://pytorch.org/hub/ultralytics_yolov5. | |
""" | |
return _create("yolov5m", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Creates YOLOv5-large model with options for pretraining, channels, classes, autoshaping, verbosity, and device | |
selection. | |
Args: | |
pretrained (bool): Load pretrained weights into the model. Default is True. | |
channels (int): Number of input channels. Default is 3. | |
classes (int): Number of model classes. Default is 80. | |
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to model. Default is True. | |
_verbose (bool): Print all information to screen. Default is True. | |
device (str | torch.device | None): Device to use for model parameters, e.g., 'cpu', 'cuda', or a torch.device instance. | |
Default is None. | |
Returns: | |
YOLOv5 model (torch.nn.Module): The YOLOv5-large model instantiated with specified configurations and possibly | |
pretrained weights. | |
Examples: | |
```python | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5l') | |
``` | |
Notes: | |
For additional details, refer to the PyTorch Hub models documentation: | |
https://pytorch.org/hub/ultralytics_yolov5 | |
""" | |
return _create("yolov5l", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Perform object detection using the YOLOv5-xlarge model with options for pretraining, input channels, class count, | |
autoshaping, verbosity, and device specification. | |
Args: | |
pretrained (bool): If True, loads pretrained weights into the model. Defaults to True. | |
channels (int): Number of input channels for the model. Defaults to 3. | |
classes (int): Number of model classes for object detection. Defaults to 80. | |
autoshape (bool): If True, applies the YOLOv5 .autoshape() wrapper for handling different input formats. Defaults to | |
True. | |
_verbose (bool): If True, prints detailed information during model loading. Defaults to True. | |
device (str | torch.device | None): Device specification for computing the model, e.g., 'cpu', 'cuda:0', torch.device('cuda'). | |
Defaults to None. | |
Returns: | |
torch.nn.Module: The YOLOv5-xlarge model loaded with the specified parameters, optionally with pretrained weights and | |
autoshaping applied. | |
Example: | |
```python | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5x') | |
``` | |
For additional details, refer to the official YOLOv5 PyTorch Hub models documentation: | |
https://pytorch.org/hub/ultralytics_yolov5 | |
""" | |
return _create("yolov5x", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Creates YOLOv5-nano-P6 model with options for pretraining, channels, classes, autoshaping, verbosity, and device. | |
Args: | |
pretrained (bool, optional): If True, loads pretrained weights into the model. Default is True. | |
channels (int, optional): Number of input channels. Default is 3. | |
classes (int, optional): Number of model classes. Default is 80. | |
autoshape (bool, optional): If True, applies the YOLOv5 .autoshape() wrapper to the model. Default is True. | |
_verbose (bool, optional): If True, prints all information to screen. Default is True. | |
device (str | torch.device | None, optional): Device to use for model parameters. Can be 'cpu', 'cuda', or None. | |
Default is None. | |
Returns: | |
torch.nn.Module: YOLOv5-nano-P6 model loaded with the specified configurations. | |
Example: | |
```python | |
import torch | |
model = yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device='cuda') | |
``` | |
Notes: | |
For more information on PyTorch Hub models, visit: https://pytorch.org/hub/ultralytics_yolov5 | |
""" | |
return _create("yolov5n6", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Instantiate the YOLOv5-small-P6 model with options for pretraining, input channels, number of classes, autoshaping, | |
verbosity, and device selection. | |
Args: | |
pretrained (bool): If True, loads pretrained weights. Default is True. | |
channels (int): Number of input channels. Default is 3. | |
classes (int): Number of object detection classes. Default is 80. | |
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model, allowing for varied input formats. | |
Default is True. | |
_verbose (bool): If True, prints detailed information during model loading. Default is True. | |
device (str | torch.device | None): Device specification for model parameters (e.g., 'cpu', 'cuda', or torch.device). | |
Default is None, which selects an available device automatically. | |
Returns: | |
torch.nn.Module: The YOLOv5-small-P6 model instance. | |
Usage: | |
```python | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s6') | |
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5s6') # load from a specific branch | |
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5s6.pt') # custom/local model | |
model = torch.hub.load('.', 'custom', 'path/to/yolov5s6.pt', source='local') # local repo model | |
``` | |
Notes: | |
- For more information, refer to the PyTorch Hub models documentation at https://pytorch.org/hub/ultralytics_yolov5 | |
Raises: | |
Exception: If there is an error during model creation or loading, with a suggestion to visit the YOLOv5 | |
tutorials for help. | |
""" | |
return _create("yolov5s6", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Create YOLOv5-medium-P6 model with options for pretraining, channel count, class count, autoshaping, verbosity, and | |
device. | |
Args: | |
pretrained (bool): If True, loads pretrained weights. Default is True. | |
channels (int): Number of input channels. Default is 3. | |
classes (int): Number of model classes. Default is 80. | |
autoshape (bool): Apply YOLOv5 .autoshape() wrapper to the model for file/URI/PIL/cv2/np inputs and NMS. | |
Default is True. | |
_verbose (bool): If True, prints detailed information to the screen. Default is True. | |
device (str | torch.device | None): Device to use for model parameters. Default is None, which uses the | |
best available device. | |
Returns: | |
torch.nn.Module: The YOLOv5-medium-P6 model. | |
Refer to the PyTorch Hub models documentation: https://pytorch.org/hub/ultralytics_yolov5 for additional details. | |
Example: | |
```python | |
import torch | |
# Load YOLOv5-medium-P6 model | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5m6') | |
``` | |
Notes: | |
- The model can be loaded with pre-trained weights for better performance on specific tasks. | |
- The autoshape feature simplifies input handling by allowing various popular data formats. | |
""" | |
return _create("yolov5m6", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Instantiate the YOLOv5-large-P6 model with options for pretraining, channel and class counts, autoshaping, | |
verbosity, and device selection. | |
Args: | |
pretrained (bool, optional): If True, load pretrained weights into the model. Default is True. | |
channels (int, optional): Number of input channels. Default is 3. | |
classes (int, optional): Number of model classes. Default is 80. | |
autoshape (bool, optional): If True, apply YOLOv5 .autoshape() wrapper to the model for input flexibility. Default is True. | |
_verbose (bool, optional): If True, print all information to the screen. Default is True. | |
device (str | torch.device | None, optional): Device to use for model parameters, e.g., 'cpu', 'cuda', or torch.device. | |
If None, automatically selects the best available device. Default is None. | |
Returns: | |
torch.nn.Module: The instantiated YOLOv5-large-P6 model. | |
Example: | |
```python | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5l6') # official model | |
model = torch.hub.load('ultralytics/yolov5:master', 'yolov5l6') # from specific branch | |
model = torch.hub.load('ultralytics/yolov5', 'custom', 'path/to/yolov5l6.pt') # custom/local model | |
model = torch.hub.load('.', 'custom', 'path/to/yolov5l6.pt', source='local') # local repository | |
``` | |
Note: | |
Refer to [PyTorch Hub Documentation](https://pytorch.org/hub/ultralytics_yolov5) for additional usage instructions. | |
""" | |
return _create("yolov5l6", pretrained, channels, classes, autoshape, _verbose, device) | |
def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, _verbose=True, device=None): | |
""" | |
Creates the YOLOv5-xlarge-P6 model with options for pretraining, number of input channels, class count, autoshaping, | |
verbosity, and device selection. | |
Args: | |
pretrained (bool): If True, loads pretrained weights into the model. Default is True. | |
channels (int): Number of input channels. Default is 3. | |
classes (int): Number of model classes. Default is 80. | |
autoshape (bool): If True, applies YOLOv5 .autoshape() wrapper to the model. Default is True. | |
_verbose (bool): If True, prints all information to the screen. Default is True. | |
device (str | torch.device | None): Device to use for model parameters, can be a string, torch.device object, or | |
None for default device selection. Default is None. | |
Returns: | |
torch.nn.Module: The instantiated YOLOv5-xlarge-P6 model. | |
Example: | |
```python | |
import torch | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5x6') # load the YOLOv5-xlarge-P6 model | |
``` | |
Note: | |
For more information on YOLOv5 models, visit the official documentation: | |
https://docs.ultralytics.com/yolov5 | |
""" | |
return _create("yolov5x6", pretrained, channels, classes, autoshape, _verbose, device) | |
if __name__ == "__main__": | |
import argparse | |
from pathlib import Path | |
import numpy as np | |
from PIL import Image | |
from utils.general import cv2, print_args | |
# Argparser | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, default="yolov5s", help="model name") | |
opt = parser.parse_args() | |
print_args(vars(opt)) | |
# Model | |
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) | |
# model = custom(path='path/to/model.pt') # custom | |
# Images | |
imgs = [ | |
"data/images/zidane.jpg", # filename | |
Path("data/images/zidane.jpg"), # Path | |
"https://ultralytics.com/images/zidane.jpg", # URI | |
cv2.imread("data/images/bus.jpg")[:, :, ::-1], # OpenCV | |
Image.open("data/images/bus.jpg"), # PIL | |
np.zeros((320, 640, 3)), | |
] # numpy | |
# Inference | |
results = model(imgs, size=320) # batched inference | |
# Results | |
results.print() | |
results.save() | |