File size: 69,367 Bytes
a9ec214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""

Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit



Format                      | `export.py --include`         | Model

---                         | ---                           | ---

PyTorch                     | -                             | yolov5s.pt

TorchScript                 | `torchscript`                 | yolov5s.torchscript

ONNX                        | `onnx`                        | yolov5s.onnx

OpenVINO                    | `openvino`                    | yolov5s_openvino_model/

TensorRT                    | `engine`                      | yolov5s.engine

CoreML                      | `coreml`                      | yolov5s.mlmodel

TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/

TensorFlow GraphDef         | `pb`                          | yolov5s.pb

TensorFlow Lite             | `tflite`                      | yolov5s.tflite

TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite

TensorFlow.js               | `tfjs`                        | yolov5s_web_model/

PaddlePaddle                | `paddle`                      | yolov5s_paddle_model/



Requirements:

    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU

    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU



Usage:

    $ python export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...



Inference:

    $ python detect.py --weights yolov5s.pt                 # PyTorch

                                 yolov5s.torchscript        # TorchScript

                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn

                                 yolov5s_openvino_model     # OpenVINO

                                 yolov5s.engine             # TensorRT

                                 yolov5s.mlmodel            # CoreML (macOS-only)

                                 yolov5s_saved_model        # TensorFlow SavedModel

                                 yolov5s.pb                 # TensorFlow GraphDef

                                 yolov5s.tflite             # TensorFlow Lite

                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU

                                 yolov5s_paddle_model       # PaddlePaddle



TensorFlow.js:

    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example

    $ npm install

    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model

    $ npm start

"""

import argparse
import contextlib
import json
import os
import platform
import re
import subprocess
import sys
import time
import warnings
from pathlib import Path

import pandas as pd
import torch
from torch.utils.mobile_optimizer import optimize_for_mobile

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if platform.system() != "Windows":
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.experimental import attempt_load
from models.yolo import ClassificationModel, Detect, DetectionModel, SegmentationModel
from utils.dataloaders import LoadImages
from utils.general import (
    LOGGER,
    Profile,
    check_dataset,
    check_img_size,
    check_requirements,
    check_version,
    check_yaml,
    colorstr,
    file_size,
    get_default_args,
    print_args,
    url2file,
    yaml_save,
)
from utils.torch_utils import select_device, smart_inference_mode

MACOS = platform.system() == "Darwin"  # macOS environment


class iOSModel(torch.nn.Module):
    def __init__(self, model, im):
        """

        Initializes an iOS compatible model with normalization based on image dimensions.



        Args:

            model (torch.nn.Module): The PyTorch model to be adapted for iOS compatibility.

            im (torch.Tensor): An input tensor representing a batch of images with shape (B, C, H, W).



        Returns:

            None: This method does not return any value.



        Notes:

            This initializer configures normalization based on the input image dimensions, which is critical for

            ensuring the model's compatibility and proper functionality on iOS devices. The normalization step

            involves dividing by the image width if the image is square; otherwise, additional conditions might apply.

        """
        super().__init__()
        b, c, h, w = im.shape  # batch, channel, height, width
        self.model = model
        self.nc = model.nc  # number of classes
        if w == h:
            self.normalize = 1.0 / w
        else:
            self.normalize = torch.tensor([1.0 / w, 1.0 / h, 1.0 / w, 1.0 / h])  # broadcast (slower, smaller)
            # np = model(im)[0].shape[1]  # number of points
            # self.normalize = torch.tensor([1. / w, 1. / h, 1. / w, 1. / h]).expand(np, 4)  # explicit (faster, larger)

    def forward(self, x):
        """

        Run a forward pass on the input tensor, returning class confidences and normalized coordinates.



        Args:

            x (torch.Tensor): Input tensor containing the image data with shape (batch, channels, height, width).



        Returns:

            torch.Tensor: Concatenated tensor with normalized coordinates (xywh), confidence scores (conf),

            and class probabilities (cls), having shape (N, 4 + 1 + C), where N is the number of predictions,

            and C is the number of classes.



        Examples:

            ```python

            model = iOSModel(pretrained_model, input_image)

            output = model.forward(torch_input_tensor)

            ```

        """
        xywh, conf, cls = self.model(x)[0].squeeze().split((4, 1, self.nc), 1)
        return cls * conf, xywh * self.normalize  # confidence (3780, 80), coordinates (3780, 4)


def export_formats():
    """

    Returns a DataFrame of supported YOLOv5 model export formats and their properties.



    Returns:

        pandas.DataFrame: A DataFrame containing supported export formats and their properties. The DataFrame

        includes columns for format name, CLI argument suffix, file extension or directory name, and boolean flags

        indicating if the export format supports training and detection.



    Examples:

        ```python

        formats = export_formats()

        print(f"Supported export formats:\n{formats}")

        ```



    Notes:

        The DataFrame contains the following columns:

        - Format: The name of the model format (e.g., PyTorch, TorchScript, ONNX, etc.).

        - Include Argument: The argument to use with the export script to include this format.

        - File Suffix: File extension or directory name associated with the format.

        - Supports Training: Whether the format supports training.

        - Supports Detection: Whether the format supports detection.

    """
    x = [
        ["PyTorch", "-", ".pt", True, True],
        ["TorchScript", "torchscript", ".torchscript", True, True],
        ["ONNX", "onnx", ".onnx", True, True],
        ["OpenVINO", "openvino", "_openvino_model", True, False],
        ["TensorRT", "engine", ".engine", False, True],
        ["CoreML", "coreml", ".mlpackage", True, False],
        ["TensorFlow SavedModel", "saved_model", "_saved_model", True, True],
        ["TensorFlow GraphDef", "pb", ".pb", True, True],
        ["TensorFlow Lite", "tflite", ".tflite", True, False],
        ["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", False, False],
        ["TensorFlow.js", "tfjs", "_web_model", False, False],
        ["PaddlePaddle", "paddle", "_paddle_model", True, True],
    ]
    return pd.DataFrame(x, columns=["Format", "Argument", "Suffix", "CPU", "GPU"])


def try_export(inner_func):
    """

    Log success or failure, execution time, and file size for YOLOv5 model export functions wrapped with @try_export.



    Args:

        inner_func (Callable): The model export function to be wrapped by the decorator.



    Returns:

        Callable: The wrapped function that logs execution details. When executed, this wrapper function returns either:

            - Tuple (str | torch.nn.Module): On success — the file path of the exported model and the model instance.

            - Tuple (None, None): On failure — None values indicating export failure.



    Examples:

        ```python

        @try_export

        def export_onnx(model, filepath):

            # implementation here

            pass



        exported_file, exported_model = export_onnx(yolo_model, 'path/to/save/model.onnx')

        ```



    Notes:

        For additional requirements and model export formats, refer to the

        [Ultralytics YOLOv5 GitHub repository](https://github.com/ultralytics/ultralytics).

    """
    inner_args = get_default_args(inner_func)

    def outer_func(*args, **kwargs):
        """Logs success/failure and execution details of model export functions wrapped with @try_export decorator."""
        prefix = inner_args["prefix"]
        try:
            with Profile() as dt:
                f, model = inner_func(*args, **kwargs)
            LOGGER.info(f"{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)")
            return f, model
        except Exception as e:
            LOGGER.info(f"{prefix} export failure ❌ {dt.t:.1f}s: {e}")
            return None, None

    return outer_func


@try_export
def export_torchscript(model, im, file, optimize, prefix=colorstr("TorchScript:")):
    """

    Export a YOLOv5 model to the TorchScript format.



    Args:

        model (torch.nn.Module): The YOLOv5 model to be exported.

        im (torch.Tensor): Example input tensor to be used for tracing the TorchScript model.

        file (Path): File path where the exported TorchScript model will be saved.

        optimize (bool): If True, applies optimizations for mobile deployment.

        prefix (str): Optional prefix for log messages. Default is 'TorchScript:'.



    Returns:

        (str | None, torch.jit.ScriptModule | None): A tuple containing the file path of the exported model

            (as a string) and the TorchScript model (as a torch.jit.ScriptModule). If the export fails, both elements

            of the tuple will be None.



    Notes:

        - This function uses tracing to create the TorchScript model.

        - Metadata, including the input image shape, model stride, and class names, is saved in an extra file (`config.txt`)

          within the TorchScript model package.

        - For mobile optimization, refer to the PyTorch tutorial: https://pytorch.org/tutorials/recipes/mobile_interpreter.html



    Example:

        ```python

        from pathlib import Path

        import torch

        from models.experimental import attempt_load

        from utils.torch_utils import select_device



        # Load model

        weights = 'yolov5s.pt'

        device = select_device('')

        model = attempt_load(weights, device=device)



        # Example input tensor

        im = torch.zeros(1, 3, 640, 640).to(device)



        # Export model

        file = Path('yolov5s.torchscript')

        export_torchscript(model, im, file, optimize=False)

        ```

    """
    LOGGER.info(f"\n{prefix} starting export with torch {torch.__version__}...")
    f = file.with_suffix(".torchscript")

    ts = torch.jit.trace(model, im, strict=False)
    d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
    extra_files = {"config.txt": json.dumps(d)}  # torch._C.ExtraFilesMap()
    if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
        optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
    else:
        ts.save(str(f), _extra_files=extra_files)
    return f, None


@try_export
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr("ONNX:")):
    """

    Export a YOLOv5 model to ONNX format with dynamic axes support and optional model simplification.



    Args:

        model (torch.nn.Module): The YOLOv5 model to be exported.

        im (torch.Tensor): A sample input tensor for model tracing, usually the shape is (1, 3, height, width).

        file (pathlib.Path | str): The output file path where the ONNX model will be saved.

        opset (int): The ONNX opset version to use for export.

        dynamic (bool): If True, enables dynamic axes for batch, height, and width dimensions.

        simplify (bool): If True, applies ONNX model simplification for optimization.

        prefix (str): A prefix string for logging messages, defaults to 'ONNX:'.



    Returns:

        tuple[pathlib.Path | str, None]: The path to the saved ONNX model file and None (consistent with decorator).



    Raises:

        ImportError: If required libraries for export (e.g., 'onnx', 'onnx-simplifier') are not installed.

        AssertionError: If the simplification check fails.



    Notes:

        The required packages for this function can be installed via:

        ```

        pip install onnx onnx-simplifier onnxruntime onnxruntime-gpu

        ```



    Example:

        ```python

        from pathlib import Path

        import torch

        from models.experimental import attempt_load

        from utils.torch_utils import select_device



        # Load model

        weights = 'yolov5s.pt'

        device = select_device('')

        model = attempt_load(weights, map_location=device)



        # Example input tensor

        im = torch.zeros(1, 3, 640, 640).to(device)



        # Export model

        file_path = Path('yolov5s.onnx')

        export_onnx(model, im, file_path, opset=12, dynamic=True, simplify=True)

        ```

    """
    check_requirements("onnx>=1.12.0")
    import onnx

    LOGGER.info(f"\n{prefix} starting export with onnx {onnx.__version__}...")
    f = str(file.with_suffix(".onnx"))

    output_names = ["output0", "output1"] if isinstance(model, SegmentationModel) else ["output0"]
    if dynamic:
        dynamic = {"images": {0: "batch", 2: "height", 3: "width"}}  # shape(1,3,640,640)
        if isinstance(model, SegmentationModel):
            dynamic["output0"] = {0: "batch", 1: "anchors"}  # shape(1,25200,85)
            dynamic["output1"] = {0: "batch", 2: "mask_height", 3: "mask_width"}  # shape(1,32,160,160)
        elif isinstance(model, DetectionModel):
            dynamic["output0"] = {0: "batch", 1: "anchors"}  # shape(1,25200,85)

    torch.onnx.export(
        model.cpu() if dynamic else model,  # --dynamic only compatible with cpu
        im.cpu() if dynamic else im,
        f,
        verbose=False,
        opset_version=opset,
        do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
        input_names=["images"],
        output_names=output_names,
        dynamic_axes=dynamic or None,
    )

    # Checks
    model_onnx = onnx.load(f)  # load onnx model
    onnx.checker.check_model(model_onnx)  # check onnx model

    # Metadata
    d = {"stride": int(max(model.stride)), "names": model.names}
    for k, v in d.items():
        meta = model_onnx.metadata_props.add()
        meta.key, meta.value = k, str(v)
    onnx.save(model_onnx, f)

    # Simplify
    if simplify:
        try:
            cuda = torch.cuda.is_available()
            check_requirements(("onnxruntime-gpu" if cuda else "onnxruntime", "onnx-simplifier>=0.4.1"))
            import onnxsim

            LOGGER.info(f"{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...")
            model_onnx, check = onnxsim.simplify(model_onnx)
            assert check, "assert check failed"
            onnx.save(model_onnx, f)
        except Exception as e:
            LOGGER.info(f"{prefix} simplifier failure: {e}")
    return f, model_onnx


@try_export
def export_openvino(file, metadata, half, int8, data, prefix=colorstr("OpenVINO:")):
    """

    Export a YOLOv5 model to OpenVINO format with optional FP16 and INT8 quantization.



    Args:

        file (Path): Path to the output file where the OpenVINO model will be saved.

        metadata (dict): Dictionary including model metadata such as names and strides.

        half (bool): If True, export the model with FP16 precision.

        int8 (bool): If True, export the model with INT8 quantization.

        data (str): Path to the dataset YAML file required for INT8 quantization.

        prefix (str): Prefix string for logging purposes (default is "OpenVINO:").



    Returns:

        (str, openvino.runtime.Model | None): The OpenVINO model file path and openvino.runtime.Model object if export is

            successful; otherwise, None.



    Notes:

        - Requires `openvino-dev` package version 2023.0 or higher. Install with:

          `$ pip install openvino-dev>=2023.0`

        - For INT8 quantization, also requires `nncf` library version 2.5.0 or higher. Install with:

          `$ pip install nncf>=2.5.0`



    Examples:

        ```python

        from pathlib import Path

        from ultralytics import YOLOv5



        model = YOLOv5('yolov5s.pt')

        export_openvino(Path('yolov5s.onnx'), metadata={'names': model.names, 'stride': model.stride}, half=True,

                        int8=False, data='data.yaml')

        ```



        This will export the YOLOv5 model to OpenVINO with FP16 precision but without INT8 quantization, saving it to

        the specified file path.

    """
    check_requirements("openvino-dev>=2023.0")  # requires openvino-dev: https://pypi.org/project/openvino-dev/
    import openvino.runtime as ov  # noqa
    from openvino.tools import mo  # noqa

    LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
    f = str(file).replace(file.suffix, f"_{'int8_' if int8 else ''}openvino_model{os.sep}")
    f_onnx = file.with_suffix(".onnx")
    f_ov = str(Path(f) / file.with_suffix(".xml").name)

    ov_model = mo.convert_model(f_onnx, model_name=file.stem, framework="onnx", compress_to_fp16=half)  # export

    if int8:
        check_requirements("nncf>=2.5.0")  # requires at least version 2.5.0 to use the post-training quantization
        import nncf
        import numpy as np

        from utils.dataloaders import create_dataloader

        def gen_dataloader(yaml_path, task="train", imgsz=640, workers=4):
            """Generates a DataLoader for model training or validation based on the given YAML dataset configuration."""
            data_yaml = check_yaml(yaml_path)
            data = check_dataset(data_yaml)
            dataloader = create_dataloader(
                data[task], imgsz=imgsz, batch_size=1, stride=32, pad=0.5, single_cls=False, rect=False, workers=workers
            )[0]
            return dataloader

        # noqa: F811

        def transform_fn(data_item):
            """

            Quantization transform function.



            Extracts and preprocess input data from dataloader item for quantization.

            Parameters:

               data_item: Tuple with data item produced by DataLoader during iteration

            Returns:

                input_tensor: Input data for quantization

            """
            assert data_item[0].dtype == torch.uint8, "input image must be uint8 for the quantization preprocessing"

            img = data_item[0].numpy().astype(np.float32)  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            return np.expand_dims(img, 0) if img.ndim == 3 else img

        ds = gen_dataloader(data)
        quantization_dataset = nncf.Dataset(ds, transform_fn)
        ov_model = nncf.quantize(ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED)

    ov.serialize(ov_model, f_ov)  # save
    yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata)  # add metadata.yaml
    return f, None


@try_export
def export_paddle(model, im, file, metadata, prefix=colorstr("PaddlePaddle:")):
    """

    Export a YOLOv5 PyTorch model to PaddlePaddle format using X2Paddle, saving the converted model and metadata.



    Args:

        model (torch.nn.Module): The YOLOv5 model to be exported.

        im (torch.Tensor): Input tensor used for model tracing during export.

        file (pathlib.Path): Path to the source file to be converted.

        metadata (dict): Additional metadata to be saved alongside the model.

        prefix (str): Prefix for logging information.



    Returns:

        tuple (str, None): A tuple where the first element is the path to the saved PaddlePaddle model, and the

        second element is None.



    Examples:

        ```python

        from pathlib import Path

        import torch



        # Assume 'model' is a pre-trained YOLOv5 model and 'im' is an example input tensor

        model = ...  # Load your model here

        im = torch.randn((1, 3, 640, 640))  # Dummy input tensor for tracing

        file = Path("yolov5s.pt")

        metadata = {"stride": 32, "names": ["person", "bicycle", "car", "motorbike"]}



        export_paddle(model=model, im=im, file=file, metadata=metadata)

        ```



    Notes:

        Ensure that `paddlepaddle` and `x2paddle` are installed, as these are required for the export function. You can

        install them via pip:

        ```

        $ pip install paddlepaddle x2paddle

        ```

    """
    check_requirements(("paddlepaddle", "x2paddle"))
    import x2paddle
    from x2paddle.convert import pytorch2paddle

    LOGGER.info(f"\n{prefix} starting export with X2Paddle {x2paddle.__version__}...")
    f = str(file).replace(".pt", f"_paddle_model{os.sep}")

    pytorch2paddle(module=model, save_dir=f, jit_type="trace", input_examples=[im])  # export
    yaml_save(Path(f) / file.with_suffix(".yaml").name, metadata)  # add metadata.yaml
    return f, None


@try_export
def export_coreml(model, im, file, int8, half, nms, mlmodel, prefix=colorstr("CoreML:")):
    """

    Export a YOLOv5 model to CoreML format with optional NMS, INT8, and FP16 support.



    Args:

        model (torch.nn.Module): The YOLOv5 model to be exported.

        im (torch.Tensor): Example input tensor to trace the model.

        file (pathlib.Path): Path object where the CoreML model will be saved.

        int8 (bool): Flag indicating whether to use INT8 quantization (default is False).

        half (bool): Flag indicating whether to use FP16 quantization (default is False).

        nms (bool): Flag indicating whether to include Non-Maximum Suppression (default is False).

        mlmodel (bool): Flag indicating whether to export as older *.mlmodel format (default is False).

        prefix (str): Prefix string for logging purposes (default is 'CoreML:').



    Returns:

        tuple[pathlib.Path | None, None]: The path to the saved CoreML model file, or (None, None) if there is an error.



    Notes:

        The exported CoreML model will be saved with a .mlmodel extension.

        Quantization is supported only on macOS.



    Example:

        ```python

        from pathlib import Path

        import torch

        from models.yolo import Model

        model = Model(cfg, ch=3, nc=80)

        im = torch.randn(1, 3, 640, 640)

        file = Path("yolov5s_coreml")

        export_coreml(model, im, file, int8=False, half=False, nms=True, mlmodel=False)

        ```

    """
    check_requirements("coremltools")
    import coremltools as ct

    LOGGER.info(f"\n{prefix} starting export with coremltools {ct.__version__}...")
    if mlmodel:
        f = file.with_suffix(".mlmodel")
        convert_to = "neuralnetwork"
        precision = None
    else:
        f = file.with_suffix(".mlpackage")
        convert_to = "mlprogram"
        if half:
            precision = ct.precision.FLOAT16
        else:
            precision = ct.precision.FLOAT32

    if nms:
        model = iOSModel(model, im)
    ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
    ct_model = ct.convert(
        ts,
        inputs=[ct.ImageType("image", shape=im.shape, scale=1 / 255, bias=[0, 0, 0])],
        convert_to=convert_to,
        compute_precision=precision,
    )
    bits, mode = (8, "kmeans") if int8 else (16, "linear") if half else (32, None)
    if bits < 32:
        if mlmodel:
            with warnings.catch_warnings():
                warnings.filterwarnings(
                    "ignore", category=DeprecationWarning
                )  # suppress numpy==1.20 float warning, fixed in coremltools==7.0
                ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
        elif bits == 8:
            op_config = ct.optimize.coreml.OpPalettizerConfig(mode=mode, nbits=bits, weight_threshold=512)
            config = ct.optimize.coreml.OptimizationConfig(global_config=op_config)
            ct_model = ct.optimize.coreml.palettize_weights(ct_model, config)
    ct_model.save(f)
    return f, ct_model


@try_export
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr("TensorRT:")):
    """

    Export a YOLOv5 model to TensorRT engine format, requiring GPU and TensorRT>=7.0.0.



    Args:

        model (torch.nn.Module): YOLOv5 model to be exported.

        im (torch.Tensor): Input tensor of shape (B, C, H, W).

        file (pathlib.Path): Path to save the exported model.

        half (bool): Set to True to export with FP16 precision.

        dynamic (bool): Set to True to enable dynamic input shapes.

        simplify (bool): Set to True to simplify the model during export.

        workspace (int): Workspace size in GB (default is 4).

        verbose (bool): Set to True for verbose logging output.

        prefix (str): Log message prefix.



    Returns:

        (pathlib.Path, None): Tuple containing the path to the exported model and None.



    Raises:

        AssertionError: If executed on CPU instead of GPU.

        RuntimeError: If there is a failure in parsing the ONNX file.



    Example:

        ```python

        from ultralytics import YOLOv5

        import torch

        from pathlib import Path



        model = YOLOv5('yolov5s.pt')  # Load a pre-trained YOLOv5 model

        input_tensor = torch.randn(1, 3, 640, 640).cuda()  # example input tensor on GPU

        export_path = Path('yolov5s.engine')  # export destination



        export_engine(model.model, input_tensor, export_path, half=True, dynamic=True, simplify=True, workspace=8, verbose=True)

        ```

    """
    assert im.device.type != "cpu", "export running on CPU but must be on GPU, i.e. `python export.py --device 0`"
    try:
        import tensorrt as trt
    except Exception:
        if platform.system() == "Linux":
            check_requirements("nvidia-tensorrt", cmds="-U --index-url https://pypi.ngc.nvidia.com")
        import tensorrt as trt

    if trt.__version__[0] == "7":  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
        grid = model.model[-1].anchor_grid
        model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
        model.model[-1].anchor_grid = grid
    else:  # TensorRT >= 8
        check_version(trt.__version__, "8.0.0", hard=True)  # require tensorrt>=8.0.0
        export_onnx(model, im, file, 12, dynamic, simplify)  # opset 12
    onnx = file.with_suffix(".onnx")

    LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
    is_trt10 = int(trt.__version__.split(".")[0]) >= 10  # is TensorRT >= 10
    assert onnx.exists(), f"failed to export ONNX file: {onnx}"
    f = file.with_suffix(".engine")  # TensorRT engine file
    logger = trt.Logger(trt.Logger.INFO)
    if verbose:
        logger.min_severity = trt.Logger.Severity.VERBOSE

    builder = trt.Builder(logger)
    config = builder.create_builder_config()
    if is_trt10:
        config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30)
    else:  # TensorRT versions 7, 8
        config.max_workspace_size = workspace * 1 << 30
    flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
    network = builder.create_network(flag)
    parser = trt.OnnxParser(network, logger)
    if not parser.parse_from_file(str(onnx)):
        raise RuntimeError(f"failed to load ONNX file: {onnx}")

    inputs = [network.get_input(i) for i in range(network.num_inputs)]
    outputs = [network.get_output(i) for i in range(network.num_outputs)]
    for inp in inputs:
        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
    for out in outputs:
        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')

    if dynamic:
        if im.shape[0] <= 1:
            LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
        profile = builder.create_optimization_profile()
        for inp in inputs:
            profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
        config.add_optimization_profile(profile)

    LOGGER.info(f"{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}")
    if builder.platform_has_fast_fp16 and half:
        config.set_flag(trt.BuilderFlag.FP16)

    build = builder.build_serialized_network if is_trt10 else builder.build_engine
    with build(network, config) as engine, open(f, "wb") as t:
        t.write(engine if is_trt10 else engine.serialize())
    return f, None


@try_export
def export_saved_model(

    model,

    im,

    file,

    dynamic,

    tf_nms=False,

    agnostic_nms=False,

    topk_per_class=100,

    topk_all=100,

    iou_thres=0.45,

    conf_thres=0.25,

    keras=False,

    prefix=colorstr("TensorFlow SavedModel:"),

):
    """

    Export a YOLOv5 model to the TensorFlow SavedModel format, supporting dynamic axes and non-maximum suppression

    (NMS).



    Args:

        model (torch.nn.Module): The PyTorch model to convert.

        im (torch.Tensor): Sample input tensor with shape (B, C, H, W) for tracing.

        file (pathlib.Path): File path to save the exported model.

        dynamic (bool): Flag to indicate whether dynamic axes should be used.

        tf_nms (bool, optional): Enable TensorFlow non-maximum suppression (NMS). Default is False.

        agnostic_nms (bool, optional): Enable class-agnostic NMS. Default is False.

        topk_per_class (int, optional): Top K detections per class to keep before applying NMS. Default is 100.

        topk_all (int, optional): Top K detections across all classes to keep before applying NMS. Default is 100.

        iou_thres (float, optional): IoU threshold for NMS. Default is 0.45.

        conf_thres (float, optional): Confidence threshold for detections. Default is 0.25.

        keras (bool, optional): Save the model in Keras format if True. Default is False.

        prefix (str, optional): Prefix for logging messages. Default is "TensorFlow SavedModel:".



    Returns:

        tuple[str, tf.keras.Model | None]: A tuple containing the path to the saved model folder and the Keras model instance,

        or None if TensorFlow export fails.



    Notes:

        - The method supports TensorFlow versions up to 2.15.1.

        - TensorFlow NMS may not be supported in older TensorFlow versions.

        - If the TensorFlow version exceeds 2.13.1, it might cause issues when exporting to TFLite.

          Refer to: https://github.com/ultralytics/yolov5/issues/12489



    Example:

        ```python

        model, im = ...  # Initialize your PyTorch model and input tensor

        export_saved_model(model, im, Path("yolov5_saved_model"), dynamic=True)

        ```

    """
    # YOLOv5 TensorFlow SavedModel export
    try:
        import tensorflow as tf
    except Exception:
        check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}<=2.15.1")

        import tensorflow as tf
    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

    from models.tf import TFModel

    LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
    if tf.__version__ > "2.13.1":
        helper_url = "https://github.com/ultralytics/yolov5/issues/12489"
        LOGGER.info(
            f"WARNING ⚠️ using Tensorflow {tf.__version__} > 2.13.1 might cause issue when exporting the model to tflite {helper_url}"
        )  # handling issue https://github.com/ultralytics/yolov5/issues/12489
    f = str(file).replace(".pt", "_saved_model")
    batch_size, ch, *imgsz = list(im.shape)  # BCHW

    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
    im = tf.zeros((batch_size, *imgsz, ch))  # BHWC order for TensorFlow
    _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
    inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
    outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
    keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
    keras_model.trainable = False
    keras_model.summary()
    if keras:
        keras_model.save(f, save_format="tf")
    else:
        spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
        m = tf.function(lambda x: keras_model(x))  # full model
        m = m.get_concrete_function(spec)
        frozen_func = convert_variables_to_constants_v2(m)
        tfm = tf.Module()
        tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
        tfm.__call__(im)
        tf.saved_model.save(
            tfm,
            f,
            options=tf.saved_model.SaveOptions(experimental_custom_gradients=False)
            if check_version(tf.__version__, "2.6")
            else tf.saved_model.SaveOptions(),
        )
    return f, keras_model


@try_export
def export_pb(keras_model, file, prefix=colorstr("TensorFlow GraphDef:")):
    """

    Export YOLOv5 model to TensorFlow GraphDef (*.pb) format.



    Args:

        keras_model (tf.keras.Model): The Keras model to be converted.

        file (Path): The output file path where the GraphDef will be saved.

        prefix (str): Optional prefix string; defaults to a colored string indicating TensorFlow GraphDef export status.



    Returns:

        Tuple[Path, None]: The file path where the GraphDef model was saved and a None placeholder.



    Notes:

        For more details, refer to the guide on frozen graphs: https://github.com/leimao/Frozen_Graph_TensorFlow



    Example:

        ```python

        from pathlib import Path

        keras_model = ...  # assume an existing Keras model

        file = Path("model.pb")

        export_pb(keras_model, file)

        ```

    """
    import tensorflow as tf
    from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

    LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
    f = file.with_suffix(".pb")

    m = tf.function(lambda x: keras_model(x))  # full model
    m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
    frozen_func = convert_variables_to_constants_v2(m)
    frozen_func.graph.as_graph_def()
    tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
    return f, None


@try_export
def export_tflite(

    keras_model, im, file, int8, per_tensor, data, nms, agnostic_nms, prefix=colorstr("TensorFlow Lite:")

):
    # YOLOv5 TensorFlow Lite export
    """

    Export a YOLOv5 model to TensorFlow Lite format with optional INT8 quantization and NMS support.



    Args:

        keras_model (tf.keras.Model): The Keras model to be exported.

        im (torch.Tensor): An input image tensor for normalization and model tracing.

        file (Path): The file path to save the TensorFlow Lite model.

        int8 (bool): Enables INT8 quantization if True.

        per_tensor (bool): If True, disables per-channel quantization.

        data (str): Path to the dataset for representative dataset generation in INT8 quantization.

        nms (bool): Enables Non-Maximum Suppression (NMS) if True.

        agnostic_nms (bool): Enables class-agnostic NMS if True.

        prefix (str): Prefix for log messages.



    Returns:

        (str | None, tflite.Model | None): The file path of the exported TFLite model and the TFLite model instance, or None

        if the export failed.



    Example:

        ```python

        from pathlib import Path

        import torch

        import tensorflow as tf



        # Load a Keras model wrapping a YOLOv5 model

        keras_model = tf.keras.models.load_model('path/to/keras_model.h5')



        # Example input tensor

        im = torch.zeros(1, 3, 640, 640)



        # Export the model

        export_tflite(keras_model, im, Path('model.tflite'), int8=True, per_tensor=False, data='data/coco.yaml',

                      nms=True, agnostic_nms=False)

        ```



    Notes:

        - Ensure TensorFlow and TensorFlow Lite dependencies are installed.

        - INT8 quantization requires a representative dataset to achieve optimal accuracy.

        - TensorFlow Lite models are suitable for efficient inference on mobile and edge devices.

    """
    import tensorflow as tf

    LOGGER.info(f"\n{prefix} starting export with tensorflow {tf.__version__}...")
    batch_size, ch, *imgsz = list(im.shape)  # BCHW
    f = str(file).replace(".pt", "-fp16.tflite")

    converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
    converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
    converter.target_spec.supported_types = [tf.float16]
    converter.optimizations = [tf.lite.Optimize.DEFAULT]
    if int8:
        from models.tf import representative_dataset_gen

        dataset = LoadImages(check_dataset(check_yaml(data))["train"], img_size=imgsz, auto=False)
        converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
        converter.target_spec.supported_types = []
        converter.inference_input_type = tf.uint8  # or tf.int8
        converter.inference_output_type = tf.uint8  # or tf.int8
        converter.experimental_new_quantizer = True
        if per_tensor:
            converter._experimental_disable_per_channel = True
        f = str(file).replace(".pt", "-int8.tflite")
    if nms or agnostic_nms:
        converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)

    tflite_model = converter.convert()
    open(f, "wb").write(tflite_model)
    return f, None


@try_export
def export_edgetpu(file, prefix=colorstr("Edge TPU:")):
    """

    Exports a YOLOv5 model to Edge TPU compatible TFLite format; requires Linux and Edge TPU compiler.



    Args:

        file (Path): Path to the YOLOv5 model file to be exported (.pt format).

        prefix (str, optional): Prefix for logging messages. Defaults to colorstr("Edge TPU:").



    Returns:

        tuple[Path, None]: Path to the exported Edge TPU compatible TFLite model, None.



    Raises:

        AssertionError: If the system is not Linux.

        subprocess.CalledProcessError: If any subprocess call to install or run the Edge TPU compiler fails.



    Notes:

        To use this function, ensure you have the Edge TPU compiler installed on your Linux system. You can find

        installation instructions here: https://coral.ai/docs/edgetpu/compiler/.



    Example:

        ```python

        from pathlib import Path

        file = Path('yolov5s.pt')

        export_edgetpu(file)

        ```

    """
    cmd = "edgetpu_compiler --version"
    help_url = "https://coral.ai/docs/edgetpu/compiler/"
    assert platform.system() == "Linux", f"export only supported on Linux. See {help_url}"
    if subprocess.run(f"{cmd} > /dev/null 2>&1", shell=True).returncode != 0:
        LOGGER.info(f"\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}")
        sudo = subprocess.run("sudo --version >/dev/null", shell=True).returncode == 0  # sudo installed on system
        for c in (
            "curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -",
            'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
            "sudo apt-get update",
            "sudo apt-get install edgetpu-compiler",
        ):
            subprocess.run(c if sudo else c.replace("sudo ", ""), shell=True, check=True)
    ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]

    LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
    f = str(file).replace(".pt", "-int8_edgetpu.tflite")  # Edge TPU model
    f_tfl = str(file).replace(".pt", "-int8.tflite")  # TFLite model

    subprocess.run(
        [
            "edgetpu_compiler",
            "-s",
            "-d",
            "-k",
            "10",
            "--out_dir",
            str(file.parent),
            f_tfl,
        ],
        check=True,
    )
    return f, None


@try_export
def export_tfjs(file, int8, prefix=colorstr("TensorFlow.js:")):
    """

    Convert a YOLOv5 model to TensorFlow.js format with optional uint8 quantization.



    Args:

        file (Path): Path to the YOLOv5 model file to be converted, typically having a ".pt" or ".onnx" extension.

        int8 (bool): If True, applies uint8 quantization during the conversion process.

        prefix (str): Optional prefix for logging messages, default is 'TensorFlow.js:' with color formatting.



    Returns:

        (str, None): Tuple containing the output directory path as a string and None.



    Notes:

        - This function requires the `tensorflowjs` package. Install it using:

          ```shell

          pip install tensorflowjs

          ```

        - The converted TensorFlow.js model will be saved in a directory with the "_web_model" suffix appended to the original file name.

        - The conversion involves running shell commands that invoke the TensorFlow.js converter tool.



    Example:

        ```python

        from pathlib import Path

        file = Path('yolov5.onnx')

        export_tfjs(file, int8=False)

        ```

    """
    check_requirements("tensorflowjs")
    import tensorflowjs as tfjs

    LOGGER.info(f"\n{prefix} starting export with tensorflowjs {tfjs.__version__}...")
    f = str(file).replace(".pt", "_web_model")  # js dir
    f_pb = file.with_suffix(".pb")  # *.pb path
    f_json = f"{f}/model.json"  # *.json path

    args = [
        "tensorflowjs_converter",
        "--input_format=tf_frozen_model",
        "--quantize_uint8" if int8 else "",
        "--output_node_names=Identity,Identity_1,Identity_2,Identity_3",
        str(f_pb),
        f,
    ]
    subprocess.run([arg for arg in args if arg], check=True)

    json = Path(f_json).read_text()
    with open(f_json, "w") as j:  # sort JSON Identity_* in ascending order
        subst = re.sub(
            r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
            r'"Identity.?.?": {"name": "Identity.?.?"}, '
            r'"Identity.?.?": {"name": "Identity.?.?"}, '
            r'"Identity.?.?": {"name": "Identity.?.?"}}}',
            r'{"outputs": {"Identity": {"name": "Identity"}, '
            r'"Identity_1": {"name": "Identity_1"}, '
            r'"Identity_2": {"name": "Identity_2"}, '
            r'"Identity_3": {"name": "Identity_3"}}}',
            json,
        )
        j.write(subst)
    return f, None


def add_tflite_metadata(file, metadata, num_outputs):
    """

    Adds metadata to a TensorFlow Lite (TFLite) model file, supporting multiple outputs according to TensorFlow

    guidelines.



    Args:

        file (str): Path to the TFLite model file to which metadata will be added.

        metadata (dict): Metadata information to be added to the model, structured as required by the TFLite metadata schema.

            Common keys include "name", "description", "version", "author", and "license".

        num_outputs (int): Number of output tensors the model has, used to configure the metadata properly.



    Returns:

        None



    Example:

        ```python

        metadata = {

            "name": "yolov5",

            "description": "YOLOv5 object detection model",

            "version": "1.0",

            "author": "Ultralytics",

            "license": "Apache License 2.0"

        }

        add_tflite_metadata("model.tflite", metadata, num_outputs=4)

        ```



    Note:

        TFLite metadata can include information such as model name, version, author, and other relevant details.

        For more details on the structure of the metadata, refer to TensorFlow Lite

        [metadata guidelines](https://www.tensorflow.org/lite/models/convert/metadata).

    """
    with contextlib.suppress(ImportError):
        # check_requirements('tflite_support')
        from tflite_support import flatbuffers
        from tflite_support import metadata as _metadata
        from tflite_support import metadata_schema_py_generated as _metadata_fb

        tmp_file = Path("/tmp/meta.txt")
        with open(tmp_file, "w") as meta_f:
            meta_f.write(str(metadata))

        model_meta = _metadata_fb.ModelMetadataT()
        label_file = _metadata_fb.AssociatedFileT()
        label_file.name = tmp_file.name
        model_meta.associatedFiles = [label_file]

        subgraph = _metadata_fb.SubGraphMetadataT()
        subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
        subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
        model_meta.subgraphMetadata = [subgraph]

        b = flatbuffers.Builder(0)
        b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
        metadata_buf = b.Output()

        populator = _metadata.MetadataPopulator.with_model_file(file)
        populator.load_metadata_buffer(metadata_buf)
        populator.load_associated_files([str(tmp_file)])
        populator.populate()
        tmp_file.unlink()


def pipeline_coreml(model, im, file, names, y, mlmodel, prefix=colorstr("CoreML Pipeline:")):
    """

    Convert a PyTorch YOLOv5 model to CoreML format with Non-Maximum Suppression (NMS), handling different input/output

    shapes, and saving the model.



    Args:

        model (torch.nn.Module): The YOLOv5 PyTorch model to be converted.

        im (torch.Tensor): Example input tensor with shape (N, C, H, W), where N is the batch size, C is the number of channels,

            H is the height, and W is the width.

        file (Path): Path to save the converted CoreML model.

        names (dict[int, str]): Dictionary mapping class indices to class names.

        y (torch.Tensor): Output tensor from the PyTorch model's forward pass.

        mlmodel (bool): Flag indicating whether to export as older *.mlmodel format (default is False).

        prefix (str): Custom prefix for logging messages.



    Returns:

        (Path): Path to the saved CoreML model (.mlmodel).



    Raises:

        AssertionError: If the number of class names does not match the number of classes in the model.



    Notes:

        - This function requires `coremltools` to be installed.

        - Running this function on a non-macOS environment might not support some features.

        - Flexible input shapes and additional NMS options can be customized within the function.



    Examples:

        ```python

        from pathlib import Path

        import torch



        model = torch.load('yolov5s.pt')  # Load YOLOv5 model

        im = torch.zeros((1, 3, 640, 640))  # Example input tensor



        names = {0: "person", 1: "bicycle", 2: "car", ...}  # Define class names



        y = model(im)  # Perform forward pass to get model output



        output_file = Path('yolov5s.mlmodel')  # Convert to CoreML

        pipeline_coreml(model, im, output_file, names, y)

        ```

    """
    import coremltools as ct
    from PIL import Image

    if mlmodel:
        f = file.with_suffix(".mlmodel")  # filename
    else:
        f = file.with_suffix(".mlpackage")  # filename

    print(f"{prefix} starting pipeline with coremltools {ct.__version__}...")
    batch_size, ch, h, w = list(im.shape)  # BCHW
    t = time.time()

    # YOLOv5 Output shapes
    spec = model.get_spec()
    out0, out1 = iter(spec.description.output)
    if platform.system() == "Darwin":
        img = Image.new("RGB", (w, h))  # img(192 width, 320 height)
        # img = torch.zeros((*opt.img_size, 3)).numpy()  # img size(320,192,3) iDetection
        out = model.predict({"image": img})
        out0_shape, out1_shape = out[out0.name].shape, out[out1.name].shape
    else:  # linux and windows can not run model.predict(), get sizes from pytorch output y
        s = tuple(y[0].shape)
        out0_shape, out1_shape = (s[1], s[2] - 5), (s[1], 4)  # (3780, 80), (3780, 4)

    # Checks
    nx, ny = spec.description.input[0].type.imageType.width, spec.description.input[0].type.imageType.height
    na, nc = out0_shape
    # na, nc = out0.type.multiArrayType.shape  # number anchors, classes
    assert len(names) == nc, f"{len(names)} names found for nc={nc}"  # check

    # Define output shapes (missing)
    out0.type.multiArrayType.shape[:] = out0_shape  # (3780, 80)
    out1.type.multiArrayType.shape[:] = out1_shape  # (3780, 4)
    # spec.neuralNetwork.preprocessing[0].featureName = '0'

    # Flexible input shapes
    # from coremltools.models.neural_network import flexible_shape_utils
    # s = [] # shapes
    # s.append(flexible_shape_utils.NeuralNetworkImageSize(320, 192))
    # s.append(flexible_shape_utils.NeuralNetworkImageSize(640, 384))  # (height, width)
    # flexible_shape_utils.add_enumerated_image_sizes(spec, feature_name='image', sizes=s)
    # r = flexible_shape_utils.NeuralNetworkImageSizeRange()  # shape ranges
    # r.add_height_range((192, 640))
    # r.add_width_range((192, 640))
    # flexible_shape_utils.update_image_size_range(spec, feature_name='image', size_range=r)

    # Print
    print(spec.description)

    # Model from spec
    weights_dir = None
    if mlmodel:
        weights_dir = None
    else:
        weights_dir = str(f / "Data/com.apple.CoreML/weights")
    model = ct.models.MLModel(spec, weights_dir=weights_dir)

    # 3. Create NMS protobuf
    nms_spec = ct.proto.Model_pb2.Model()
    nms_spec.specificationVersion = 5
    for i in range(2):
        decoder_output = model._spec.description.output[i].SerializeToString()
        nms_spec.description.input.add()
        nms_spec.description.input[i].ParseFromString(decoder_output)
        nms_spec.description.output.add()
        nms_spec.description.output[i].ParseFromString(decoder_output)

    nms_spec.description.output[0].name = "confidence"
    nms_spec.description.output[1].name = "coordinates"

    output_sizes = [nc, 4]
    for i in range(2):
        ma_type = nms_spec.description.output[i].type.multiArrayType
        ma_type.shapeRange.sizeRanges.add()
        ma_type.shapeRange.sizeRanges[0].lowerBound = 0
        ma_type.shapeRange.sizeRanges[0].upperBound = -1
        ma_type.shapeRange.sizeRanges.add()
        ma_type.shapeRange.sizeRanges[1].lowerBound = output_sizes[i]
        ma_type.shapeRange.sizeRanges[1].upperBound = output_sizes[i]
        del ma_type.shape[:]

    nms = nms_spec.nonMaximumSuppression
    nms.confidenceInputFeatureName = out0.name  # 1x507x80
    nms.coordinatesInputFeatureName = out1.name  # 1x507x4
    nms.confidenceOutputFeatureName = "confidence"
    nms.coordinatesOutputFeatureName = "coordinates"
    nms.iouThresholdInputFeatureName = "iouThreshold"
    nms.confidenceThresholdInputFeatureName = "confidenceThreshold"
    nms.iouThreshold = 0.45
    nms.confidenceThreshold = 0.25
    nms.pickTop.perClass = True
    nms.stringClassLabels.vector.extend(names.values())
    nms_model = ct.models.MLModel(nms_spec)

    # 4. Pipeline models together
    pipeline = ct.models.pipeline.Pipeline(
        input_features=[
            ("image", ct.models.datatypes.Array(3, ny, nx)),
            ("iouThreshold", ct.models.datatypes.Double()),
            ("confidenceThreshold", ct.models.datatypes.Double()),
        ],
        output_features=["confidence", "coordinates"],
    )
    pipeline.add_model(model)
    pipeline.add_model(nms_model)

    # Correct datatypes
    pipeline.spec.description.input[0].ParseFromString(model._spec.description.input[0].SerializeToString())
    pipeline.spec.description.output[0].ParseFromString(nms_model._spec.description.output[0].SerializeToString())
    pipeline.spec.description.output[1].ParseFromString(nms_model._spec.description.output[1].SerializeToString())

    # Update metadata
    pipeline.spec.specificationVersion = 5
    pipeline.spec.description.metadata.versionString = "https://github.com/ultralytics/yolov5"
    pipeline.spec.description.metadata.shortDescription = "https://github.com/ultralytics/yolov5"
    pipeline.spec.description.metadata.author = "[email protected]"
    pipeline.spec.description.metadata.license = "https://github.com/ultralytics/yolov5/blob/master/LICENSE"
    pipeline.spec.description.metadata.userDefined.update(
        {
            "classes": ",".join(names.values()),
            "iou_threshold": str(nms.iouThreshold),
            "confidence_threshold": str(nms.confidenceThreshold),
        }
    )

    # Save the model
    model = ct.models.MLModel(pipeline.spec, weights_dir=weights_dir)
    model.input_description["image"] = "Input image"
    model.input_description["iouThreshold"] = f"(optional) IOU Threshold override (default: {nms.iouThreshold})"
    model.input_description["confidenceThreshold"] = (
        f"(optional) Confidence Threshold override (default: {nms.confidenceThreshold})"
    )
    model.output_description["confidence"] = 'Boxes × Class confidence (see user-defined metadata "classes")'
    model.output_description["coordinates"] = "Boxes × [x, y, width, height] (relative to image size)"
    model.save(f)  # pipelined
    print(f"{prefix} pipeline success ({time.time() - t:.2f}s), saved as {f} ({file_size(f):.1f} MB)")


@smart_inference_mode()
def run(

    data=ROOT / "data/coco128.yaml",  # 'dataset.yaml path'

    weights=ROOT / "yolov5s.pt",  # weights path

    imgsz=(640, 640),  # image (height, width)

    batch_size=1,  # batch size

    device="cpu",  # cuda device, i.e. 0 or 0,1,2,3 or cpu

    include=("torchscript", "onnx"),  # include formats

    half=False,  # FP16 half-precision export

    inplace=False,  # set YOLOv5 Detect() inplace=True

    keras=False,  # use Keras

    optimize=False,  # TorchScript: optimize for mobile

    int8=False,  # CoreML/TF INT8 quantization

    per_tensor=False,  # TF per tensor quantization

    dynamic=False,  # ONNX/TF/TensorRT: dynamic axes

    simplify=False,  # ONNX: simplify model

    mlmodel=False,  # CoreML: Export in *.mlmodel format

    opset=12,  # ONNX: opset version

    verbose=False,  # TensorRT: verbose log

    workspace=4,  # TensorRT: workspace size (GB)

    nms=False,  # TF: add NMS to model

    agnostic_nms=False,  # TF: add agnostic NMS to model

    topk_per_class=100,  # TF.js NMS: topk per class to keep

    topk_all=100,  # TF.js NMS: topk for all classes to keep

    iou_thres=0.45,  # TF.js NMS: IoU threshold

    conf_thres=0.25,  # TF.js NMS: confidence threshold

):
    """

    Exports a YOLOv5 model to specified formats including ONNX, TensorRT, CoreML, and TensorFlow.



    Args:

        data (str | Path): Path to the dataset YAML configuration file. Default is 'data/coco128.yaml'.

        weights (str | Path): Path to the pretrained model weights file. Default is 'yolov5s.pt'.

        imgsz (tuple): Image size as (height, width). Default is (640, 640).

        batch_size (int): Batch size for exporting the model. Default is 1.

        device (str): Device to run the export on, e.g., '0' for GPU, 'cpu' for CPU. Default is 'cpu'.

        include (tuple): Formats to include in the export. Default is ('torchscript', 'onnx').

        half (bool): Flag to export model with FP16 half-precision. Default is False.

        inplace (bool): Set the YOLOv5 Detect() module inplace=True. Default is False.

        keras (bool): Flag to use Keras for TensorFlow SavedModel export. Default is False.

        optimize (bool): Optimize TorchScript model for mobile deployment. Default is False.

        int8 (bool): Apply INT8 quantization for CoreML or TensorFlow models. Default is False.

        per_tensor (bool): Apply per tensor quantization for TensorFlow models. Default is False.

        dynamic (bool): Enable dynamic axes for ONNX, TensorFlow, or TensorRT exports. Default is False.

        simplify (bool): Simplify the ONNX model during export. Default is False.

        opset (int): ONNX opset version. Default is 12.

        verbose (bool): Enable verbose logging for TensorRT export. Default is False.

        workspace (int): TensorRT workspace size in GB. Default is 4.

        nms (bool): Add non-maximum suppression (NMS) to the TensorFlow model. Default is False.

        agnostic_nms (bool): Add class-agnostic NMS to the TensorFlow model. Default is False.

        topk_per_class (int): Top-K boxes per class to keep for TensorFlow.js NMS. Default is 100.

        topk_all (int): Top-K boxes for all classes to keep for TensorFlow.js NMS. Default is 100.

        iou_thres (float): IoU threshold for NMS. Default is 0.45.

        conf_thres (float): Confidence threshold for NMS. Default is 0.25.

        mlmodel (bool): Flag to use *.mlmodel for CoreML export. Default is False.



    Returns:

        None



    Notes:

        - Model export is based on the specified formats in the 'include' argument.

        - Be cautious of combinations where certain flags are mutually exclusive, such as `--half` and `--dynamic`.



    Example:

        ```python

        run(

            data="data/coco128.yaml",

            weights="yolov5s.pt",

            imgsz=(640, 640),

            batch_size=1,

            device="cpu",

            include=("torchscript", "onnx"),

            half=False,

            inplace=False,

            keras=False,

            optimize=False,

            int8=False,

            per_tensor=False,

            dynamic=False,

            simplify=False,

            opset=12,

            verbose=False,

            mlmodel=False,

            workspace=4,

            nms=False,

            agnostic_nms=False,

            topk_per_class=100,

            topk_all=100,

            iou_thres=0.45,

            conf_thres=0.25,

        )

        ```

    """
    t = time.time()
    include = [x.lower() for x in include]  # to lowercase
    fmts = tuple(export_formats()["Argument"][1:])  # --include arguments
    flags = [x in include for x in fmts]
    assert sum(flags) == len(include), f"ERROR: Invalid --include {include}, valid --include arguments are {fmts}"
    jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags  # export booleans
    file = Path(url2file(weights) if str(weights).startswith(("http:/", "https:/")) else weights)  # PyTorch weights

    # Load PyTorch model
    device = select_device(device)
    if half:
        assert device.type != "cpu" or coreml, "--half only compatible with GPU export, i.e. use --device 0"
        assert not dynamic, "--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both"
    model = attempt_load(weights, device=device, inplace=True, fuse=True)  # load FP32 model

    # Checks
    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
    if optimize:
        assert device.type == "cpu", "--optimize not compatible with cuda devices, i.e. use --device cpu"

    # Input
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection

    # Update model
    model.eval()
    for k, m in model.named_modules():
        if isinstance(m, Detect):
            m.inplace = inplace
            m.dynamic = dynamic
            m.export = True

    for _ in range(2):
        y = model(im)  # dry runs
    if half and not coreml:
        im, model = im.half(), model.half()  # to FP16
    shape = tuple((y[0] if isinstance(y, tuple) else y).shape)  # model output shape
    metadata = {"stride": int(max(model.stride)), "names": model.names}  # model metadata
    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")

    # Exports
    f = [""] * len(fmts)  # exported filenames
    warnings.filterwarnings(action="ignore", category=torch.jit.TracerWarning)  # suppress TracerWarning
    if jit:  # TorchScript
        f[0], _ = export_torchscript(model, im, file, optimize)
    if engine:  # TensorRT required before ONNX
        f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
    if onnx or xml:  # OpenVINO requires ONNX
        f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
    if xml:  # OpenVINO
        f[3], _ = export_openvino(file, metadata, half, int8, data)
    if coreml:  # CoreML
        f[4], ct_model = export_coreml(model, im, file, int8, half, nms, mlmodel)
        if nms:
            pipeline_coreml(ct_model, im, file, model.names, y, mlmodel)
    if any((saved_model, pb, tflite, edgetpu, tfjs)):  # TensorFlow formats
        assert not tflite or not tfjs, "TFLite and TF.js models must be exported separately, please pass only one type."
        assert not isinstance(model, ClassificationModel), "ClassificationModel export to TF formats not yet supported."
        f[5], s_model = export_saved_model(
            model.cpu(),
            im,
            file,
            dynamic,
            tf_nms=nms or agnostic_nms or tfjs,
            agnostic_nms=agnostic_nms or tfjs,
            topk_per_class=topk_per_class,
            topk_all=topk_all,
            iou_thres=iou_thres,
            conf_thres=conf_thres,
            keras=keras,
        )
        if pb or tfjs:  # pb prerequisite to tfjs
            f[6], _ = export_pb(s_model, file)
        if tflite or edgetpu:
            f[7], _ = export_tflite(
                s_model, im, file, int8 or edgetpu, per_tensor, data=data, nms=nms, agnostic_nms=agnostic_nms
            )
            if edgetpu:
                f[8], _ = export_edgetpu(file)
            add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
        if tfjs:
            f[9], _ = export_tfjs(file, int8)
    if paddle:  # PaddlePaddle
        f[10], _ = export_paddle(model, im, file, metadata)

    # Finish
    f = [str(x) for x in f if x]  # filter out '' and None
    if any(f):
        cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel))  # type
        det &= not seg  # segmentation models inherit from SegmentationModel(DetectionModel)
        dir = Path("segment" if seg else "classify" if cls else "")
        h = "--half" if half else ""  # --half FP16 inference arg
        s = (
            "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference"
            if cls
            else "# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference"
            if seg
            else ""
        )
        LOGGER.info(
            f'\nExport complete ({time.time() - t:.1f}s)'
            f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
            f"\nDetect:          python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
            f"\nValidate:        python {dir / 'val.py'} --weights {f[-1]} {h}"
            f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')  {s}"
            f'\nVisualize:       https://netron.app'
        )
    return f  # return list of exported files/dirs


def parse_opt(known=False):
    """

    Parse command-line options for YOLOv5 model export configurations.



    Args:

        known (bool): If True, uses `argparse.ArgumentParser.parse_known_args`; otherwise, uses `argparse.ArgumentParser.parse_args`.

                      Default is False.



    Returns:

        argparse.Namespace: Object containing parsed command-line arguments.



    Example:

        ```python

        opts = parse_opt()

        print(opts.data)

        print(opts.weights)

        ```

    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model.pt path(s)")
    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640, 640], help="image (h, w)")
    parser.add_argument("--batch-size", type=int, default=1, help="batch size")
    parser.add_argument("--device", default="cpu", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--half", action="store_true", help="FP16 half-precision export")
    parser.add_argument("--inplace", action="store_true", help="set YOLOv5 Detect() inplace=True")
    parser.add_argument("--keras", action="store_true", help="TF: use Keras")
    parser.add_argument("--optimize", action="store_true", help="TorchScript: optimize for mobile")
    parser.add_argument("--int8", action="store_true", help="CoreML/TF/OpenVINO INT8 quantization")
    parser.add_argument("--per-tensor", action="store_true", help="TF per-tensor quantization")
    parser.add_argument("--dynamic", action="store_true", help="ONNX/TF/TensorRT: dynamic axes")
    parser.add_argument("--simplify", action="store_true", help="ONNX: simplify model")
    parser.add_argument("--mlmodel", action="store_true", help="CoreML: Export in *.mlmodel format")
    parser.add_argument("--opset", type=int, default=17, help="ONNX: opset version")
    parser.add_argument("--verbose", action="store_true", help="TensorRT: verbose log")
    parser.add_argument("--workspace", type=int, default=4, help="TensorRT: workspace size (GB)")
    parser.add_argument("--nms", action="store_true", help="TF: add NMS to model")
    parser.add_argument("--agnostic-nms", action="store_true", help="TF: add agnostic NMS to model")
    parser.add_argument("--topk-per-class", type=int, default=100, help="TF.js NMS: topk per class to keep")
    parser.add_argument("--topk-all", type=int, default=100, help="TF.js NMS: topk for all classes to keep")
    parser.add_argument("--iou-thres", type=float, default=0.45, help="TF.js NMS: IoU threshold")
    parser.add_argument("--conf-thres", type=float, default=0.25, help="TF.js NMS: confidence threshold")
    parser.add_argument(
        "--include",
        nargs="+",
        default=["torchscript"],
        help="torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle",
    )
    opt = parser.parse_known_args()[0] if known else parser.parse_args()
    print_args(vars(opt))
    return opt


def main(opt):
    """Run(**vars(opt))  # Execute the run function with parsed options."""
    for opt.weights in opt.weights if isinstance(opt.weights, list) else [opt.weights]:
        run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)