File size: 23,507 Bytes
a9ec214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""

Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.



Usage - sources:

    $ python detect.py --weights yolov5s.pt --source 0                               # webcam

                                                     img.jpg                         # image

                                                     vid.mp4                         # video

                                                     screen                          # screenshot

                                                     path/                           # directory

                                                     list.txt                        # list of images

                                                     list.streams                    # list of streams

                                                     'path/*.jpg'                    # glob

                                                     'https://youtu.be/LNwODJXcvt4'  # YouTube

                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream



Usage - formats:

    $ python detect.py --weights yolov5s.pt                 # PyTorch

                                 yolov5s.torchscript        # TorchScript

                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn

                                 yolov5s_openvino_model     # OpenVINO

                                 yolov5s.engine             # TensorRT

                                 yolov5s.mlpackage          # CoreML (macOS-only)

                                 yolov5s_saved_model        # TensorFlow SavedModel

                                 yolov5s.pb                 # TensorFlow GraphDef

                                 yolov5s.tflite             # TensorFlow Lite

                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU

                                 yolov5s_paddle_model       # PaddlePaddle

"""

import argparse
import csv
import os
import platform
import sys
from pathlib import Path

import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from ultralytics.utils.plotting import Annotator, colors, save_one_box

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
    LOGGER,
    Profile,
    check_file,
    check_img_size,
    check_imshow,
    check_requirements,
    colorstr,
    cv2,
    increment_path,
    non_max_suppression,
    print_args,
    scale_boxes,
    strip_optimizer,
    xyxy2xywh,
)
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(

    weights=ROOT / "yolov5s.pt",  # model path or triton URL

    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)

    data=ROOT / "data/coco128.yaml",  # dataset.yaml path

    imgsz=(640, 640),  # inference size (height, width)

    conf_thres=0.25,  # confidence threshold

    iou_thres=0.45,  # NMS IOU threshold

    max_det=1000,  # maximum detections per image

    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu

    view_img=False,  # show results

    save_txt=False,  # save results to *.txt

    save_csv=False,  # save results in CSV format

    save_conf=False,  # save confidences in --save-txt labels

    save_crop=False,  # save cropped prediction boxes

    nosave=False,  # do not save images/videos

    classes=None,  # filter by class: --class 0, or --class 0 2 3

    agnostic_nms=False,  # class-agnostic NMS

    augment=False,  # augmented inference

    visualize=False,  # visualize features

    update=False,  # update all models

    project=ROOT / "runs/detect",  # save results to project/name

    name="exp",  # save results to project/name

    exist_ok=False,  # existing project/name ok, do not increment

    line_thickness=3,  # bounding box thickness (pixels)

    hide_labels=False,  # hide labels

    hide_conf=False,  # hide confidences

    half=False,  # use FP16 half-precision inference

    dnn=False,  # use OpenCV DNN for ONNX inference

    vid_stride=1,  # video frame-rate stride

):
    """

    Runs YOLOv5 detection inference on various sources like images, videos, directories, streams, etc.



    Args:

        weights (str | Path): Path to the model weights file or a Triton URL. Default is 'yolov5s.pt'.

        source (str | Path): Input source, which can be a file, directory, URL, glob pattern, screen capture, or webcam

            index. Default is 'data/images'.

        data (str | Path): Path to the dataset YAML file. Default is 'data/coco128.yaml'.

        imgsz (tuple[int, int]): Inference image size as a tuple (height, width). Default is (640, 640).

        conf_thres (float): Confidence threshold for detections. Default is 0.25.

        iou_thres (float): Intersection Over Union (IOU) threshold for non-max suppression. Default is 0.45.

        max_det (int): Maximum number of detections per image. Default is 1000.

        device (str): CUDA device identifier (e.g., '0' or '0,1,2,3') or 'cpu'. Default is an empty string, which uses the

            best available device.

        view_img (bool): If True, display inference results using OpenCV. Default is False.

        save_txt (bool): If True, save results in a text file. Default is False.

        save_csv (bool): If True, save results in a CSV file. Default is False.

        save_conf (bool): If True, include confidence scores in the saved results. Default is False.

        save_crop (bool): If True, save cropped prediction boxes. Default is False.

        nosave (bool): If True, do not save inference images or videos. Default is False.

        classes (list[int]): List of class indices to filter detections by. Default is None.

        agnostic_nms (bool): If True, perform class-agnostic non-max suppression. Default is False.

        augment (bool): If True, use augmented inference. Default is False.

        visualize (bool): If True, visualize feature maps. Default is False.

        update (bool): If True, update all models' weights. Default is False.

        project (str | Path): Directory to save results. Default is 'runs/detect'.

        name (str): Name of the current experiment; used to create a subdirectory within 'project'. Default is 'exp'.

        exist_ok (bool): If True, existing directories with the same name are reused instead of being incremented. Default is

            False.

        line_thickness (int): Thickness of bounding box lines in pixels. Default is 3.

        hide_labels (bool): If True, do not display labels on bounding boxes. Default is False.

        hide_conf (bool): If True, do not display confidence scores on bounding boxes. Default is False.

        half (bool): If True, use FP16 half-precision inference. Default is False.

        dnn (bool): If True, use OpenCV DNN backend for ONNX inference. Default is False.

        vid_stride (int): Stride for processing video frames, to skip frames between processing. Default is 1.



    Returns:

        None



    Examples:

        ```python

        from ultralytics import run



        # Run inference on an image

        run(source='data/images/example.jpg', weights='yolov5s.pt', device='0')



        # Run inference on a video with specific confidence threshold

        run(source='data/videos/example.mp4', weights='yolov5s.pt', conf_thres=0.4, device='0')

        ```

    """
    source = str(source)
    save_img = not nosave and not source.endswith(".txt")  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
    screenshot = source.lower().startswith("screen")
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim
            if model.xml and im.shape[0] > 1:
                ims = torch.chunk(im, im.shape[0], 0)

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            if model.xml and im.shape[0] > 1:
                pred = None
                for image in ims:
                    if pred is None:
                        pred = model(image, augment=augment, visualize=visualize).unsqueeze(0)
                    else:
                        pred = torch.cat((pred, model(image, augment=augment, visualize=visualize).unsqueeze(0)), dim=0)
                pred = [pred, None]
            else:
                pred = model(im, augment=augment, visualize=visualize)
        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Define the path for the CSV file
        csv_path = save_dir / "predictions.csv"

        # Create or append to the CSV file
        def write_to_csv(image_name, prediction, confidence):
            """Writes prediction data for an image to a CSV file, appending if the file exists."""
            data = {"Image Name": image_name, "Prediction": prediction, "Confidence": confidence}
            with open(csv_path, mode="a", newline="") as f:
                writer = csv.DictWriter(f, fieldnames=data.keys())
                if not csv_path.is_file():
                    writer.writeheader()
                writer.writerow(data)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f"{i}: "
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt
            s += "%gx%g " % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    c = int(cls)  # integer class
                    label = names[c] if hide_conf else f"{names[c]}"
                    confidence = float(conf)
                    confidence_str = f"{confidence:.2f}"

                    if save_csv:
                        write_to_csv(p.name, label, confidence_str)

                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(f"{txt_path}.txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f"{names[c]} {conf:.2f}")
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / "crops" / names[c] / f"{p.stem}.jpg", BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == "Linux" and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)


def parse_opt():
    """

    Parse command-line arguments for YOLOv5 detection, allowing custom inference options and model configurations.



    Args:

        --weights (str | list[str], optional): Model path or Triton URL. Defaults to ROOT / 'yolov5s.pt'.

        --source (str, optional): File/dir/URL/glob/screen/0(webcam). Defaults to ROOT / 'data/images'.

        --data (str, optional): Dataset YAML path. Provides dataset configuration information.

        --imgsz (list[int], optional): Inference size (height, width). Defaults to [640].

        --conf-thres (float, optional): Confidence threshold. Defaults to 0.25.

        --iou-thres (float, optional): NMS IoU threshold. Defaults to 0.45.

        --max-det (int, optional): Maximum number of detections per image. Defaults to 1000.

        --device (str, optional): CUDA device, i.e., '0' or '0,1,2,3' or 'cpu'. Defaults to "".

        --view-img (bool, optional): Flag to display results. Defaults to False.

        --save-txt (bool, optional): Flag to save results to *.txt files. Defaults to False.

        --save-csv (bool, optional): Flag to save results in CSV format. Defaults to False.

        --save-conf (bool, optional): Flag to save confidences in labels saved via --save-txt. Defaults to False.

        --save-crop (bool, optional): Flag to save cropped prediction boxes. Defaults to False.

        --nosave (bool, optional): Flag to prevent saving images/videos. Defaults to False.

        --classes (list[int], optional): List of classes to filter results by, e.g., '--classes 0 2 3'. Defaults to None.

        --agnostic-nms (bool, optional): Flag for class-agnostic NMS. Defaults to False.

        --augment (bool, optional): Flag for augmented inference. Defaults to False.

        --visualize (bool, optional): Flag for visualizing features. Defaults to False.

        --update (bool, optional): Flag to update all models in the model directory. Defaults to False.

        --project (str, optional): Directory to save results. Defaults to ROOT / 'runs/detect'.

        --name (str, optional): Sub-directory name for saving results within --project. Defaults to 'exp'.

        --exist-ok (bool, optional): Flag to allow overwriting if the project/name already exists. Defaults to False.

        --line-thickness (int, optional): Thickness (in pixels) of bounding boxes. Defaults to 3.

        --hide-labels (bool, optional): Flag to hide labels in the output. Defaults to False.

        --hide-conf (bool, optional): Flag to hide confidences in the output. Defaults to False.

        --half (bool, optional): Flag to use FP16 half-precision inference. Defaults to False.

        --dnn (bool, optional): Flag to use OpenCV DNN for ONNX inference. Defaults to False.

        --vid-stride (int, optional): Video frame-rate stride, determining the number of frames to skip in between

            consecutive frames. Defaults to 1.



    Returns:

        argparse.Namespace: Parsed command-line arguments as an argparse.Namespace object.



    Example:

        ```python

        from ultralytics import YOLOv5

        args = YOLOv5.parse_opt()

        ```

    """
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")
    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")
    parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")
    parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")
    parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")
    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--view-img", action="store_true", help="show results")
    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
    parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")
    parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")
    parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")
    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
    parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")
    parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")
    parser.add_argument("--augment", action="store_true", help="augmented inference")
    parser.add_argument("--visualize", action="store_true", help="visualize features")
    parser.add_argument("--update", action="store_true", help="update all models")
    parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")
    parser.add_argument("--name", default="exp", help="save results to project/name")
    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
    parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")
    parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")
    parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")
    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    """

    Executes YOLOv5 model inference based on provided command-line arguments, validating dependencies before running.



    Args:

        opt (argparse.Namespace): Command-line arguments for YOLOv5 detection. See function `parse_opt` for details.



    Returns:

        None



    Note:

        This function performs essential pre-execution checks and initiates the YOLOv5 detection process based on user-specified

        options. Refer to the usage guide and examples for more information about different sources and formats at:

        https://github.com/ultralytics/ultralytics



    Example usage:



    ```python

    if __name__ == "__main__":

        opt = parse_opt()

        main(opt)

    ```

    """
    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)