File size: 12,326 Bytes
a9ec214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Ultralytics YOLOv5 🚀, AGPL-3.0 license
"""

Run YOLOv5 classification inference on images, videos, directories, globs, YouTube, webcam, streams, etc.



Usage - sources:

    $ python classify/predict.py --weights yolov5s-cls.pt --source 0                               # webcam

                                                                   img.jpg                         # image

                                                                   vid.mp4                         # video

                                                                   screen                          # screenshot

                                                                   path/                           # directory

                                                                   list.txt                        # list of images

                                                                   list.streams                    # list of streams

                                                                   'path/*.jpg'                    # glob

                                                                   'https://youtu.be/LNwODJXcvt4'  # YouTube

                                                                   'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream



Usage - formats:

    $ python classify/predict.py --weights yolov5s-cls.pt                 # PyTorch

                                           yolov5s-cls.torchscript        # TorchScript

                                           yolov5s-cls.onnx               # ONNX Runtime or OpenCV DNN with --dnn

                                           yolov5s-cls_openvino_model     # OpenVINO

                                           yolov5s-cls.engine             # TensorRT

                                           yolov5s-cls.mlmodel            # CoreML (macOS-only)

                                           yolov5s-cls_saved_model        # TensorFlow SavedModel

                                           yolov5s-cls.pb                 # TensorFlow GraphDef

                                           yolov5s-cls.tflite             # TensorFlow Lite

                                           yolov5s-cls_edgetpu.tflite     # TensorFlow Edge TPU

                                           yolov5s-cls_paddle_model       # PaddlePaddle

"""

import argparse
import os
import platform
import sys
from pathlib import Path

import torch
import torch.nn.functional as F

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from ultralytics.utils.plotting import Annotator

from models.common import DetectMultiBackend
from utils.augmentations import classify_transforms
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (
    LOGGER,
    Profile,
    check_file,
    check_img_size,
    check_imshow,
    check_requirements,
    colorstr,
    cv2,
    increment_path,
    print_args,
    strip_optimizer,
)
from utils.torch_utils import select_device, smart_inference_mode


@smart_inference_mode()
def run(

    weights=ROOT / "yolov5s-cls.pt",  # model.pt path(s)

    source=ROOT / "data/images",  # file/dir/URL/glob/screen/0(webcam)

    data=ROOT / "data/coco128.yaml",  # dataset.yaml path

    imgsz=(224, 224),  # inference size (height, width)

    device="",  # cuda device, i.e. 0 or 0,1,2,3 or cpu

    view_img=False,  # show results

    save_txt=False,  # save results to *.txt

    nosave=False,  # do not save images/videos

    augment=False,  # augmented inference

    visualize=False,  # visualize features

    update=False,  # update all models

    project=ROOT / "runs/predict-cls",  # save results to project/name

    name="exp",  # save results to project/name

    exist_ok=False,  # existing project/name ok, do not increment

    half=False,  # use FP16 half-precision inference

    dnn=False,  # use OpenCV DNN for ONNX inference

    vid_stride=1,  # video frame-rate stride

):
    """Conducts YOLOv5 classification inference on diverse input sources and saves results."""
    source = str(source)
    save_img = not nosave and not source.endswith(".txt")  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(("rtsp://", "rtmp://", "http://", "https://"))
    webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
    screenshot = source.lower().startswith("screen")
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, transforms=classify_transforms(imgsz[0]), vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(device=device), Profile(device=device), Profile(device=device))
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.Tensor(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            results = model(im)

        # Post-process
        with dt[2]:
            pred = F.softmax(results, dim=1)  # probabilities

        # Process predictions
        for i, prob in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f"{i}: "
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / "labels" / p.stem) + ("" if dataset.mode == "image" else f"_{frame}")  # im.txt

            s += "%gx%g " % im.shape[2:]  # print string
            annotator = Annotator(im0, example=str(names), pil=True)

            # Print results
            top5i = prob.argsort(0, descending=True)[:5].tolist()  # top 5 indices
            s += f"{', '.join(f'{names[j]} {prob[j]:.2f}' for j in top5i)}, "

            # Write results
            text = "\n".join(f"{prob[j]:.2f} {names[j]}" for j in top5i)
            if save_img or view_img:  # Add bbox to image
                annotator.text([32, 32], text, txt_color=(255, 255, 255))
            if save_txt:  # Write to file
                with open(f"{txt_path}.txt", "a") as f:
                    f.write(text + "\n")

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == "Linux" and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(".mp4"))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{dt[1].dt * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1e3 for x in dt)  # speeds per image
    LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}" % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ""
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)


def parse_opt():
    """Parses command line arguments for YOLOv5 inference settings including model, source, device, and image size."""
    parser = argparse.ArgumentParser()
    parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model path(s)")
    parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")
    parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")
    parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[224], help="inference size h,w")
    parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")
    parser.add_argument("--view-img", action="store_true", help="show results")
    parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")
    parser.add_argument("--nosave", action="store_true", help="do not save images/videos")
    parser.add_argument("--augment", action="store_true", help="augmented inference")
    parser.add_argument("--visualize", action="store_true", help="visualize features")
    parser.add_argument("--update", action="store_true", help="update all models")
    parser.add_argument("--project", default=ROOT / "runs/predict-cls", help="save results to project/name")
    parser.add_argument("--name", default="exp", help="save results to project/name")
    parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")
    parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")
    parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")
    parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt


def main(opt):
    """Executes YOLOv5 model inference with options for ONNX DNN and video frame-rate stride adjustments."""
    check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop"))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)